

CLASS VI PERMIT APPLICATION NARRATIVE

40 CFR 146.82(a)

SHELL U.S. POWER AND GAS ST. HELENA PARISH SITE

Prepared By: GEOSTOCK SANDIA, LLC

Revision No. 1 February 2023

TABLE OF CONTENTS

1.0 Proje	ect Background and Facility Information	13
1.1 Fa	cility Information	13
1.2 Pr	roject Goals	13
1.2.1	Stratigraphic Test Wells	17
1.2.2	CO ₂ Stream	18
1.2.3	Injection and Confining Zones	18
1.2.4	Injection Wells and Capacity	19
1.2.5	Monitoring Program	20
1.2.6	Project CO ₂ Details	20
2.0 Site	Characterization	22
2.1 Re	egional Geology	22
2.1.1	Regional Maps and Cross Sections	26
2.1.2	Regional Stratigraphy	26
2.1.3	Regional Structural Geology	45
2.1.4	Regional Groundwater Flow in the Injection Zones	47
2.2 Lo	ocal Geology of the Shell St. Helena Parish Site	48
2.2.1	Data Sets Used for Site Evaluation	49
2.2.2	Local Stratigraphy	51
2.2.3	Local Structure and Faulting	55
2.3 De	escription of the Confining and Injection Zones	57
2.3.1	Confining Zones	58
2.3.2	Injection Zones	60
2.4 Ge	eomechanics and Petrophysics	65

2.4.1	Ductility	66
2.4.2	Stresses and Rock Mechanics	71
2.4.3	Pore Pressures of the Injection Zone	74
2.4.4	Calculated Fracture Gradient	77
2.5	Seismicity	79
2.5.1	Regional Seismic Activity	82
2.5.2	Seismic Risk of the Project Site	84
2.5.3	Induced Seismicity Analysis at the Project Site	85
2.5.4	Seismic Risk Models for the Project Site	87
2.6 I	Hydrogeology	92
2.6.1	Regional Hydrogeology	93
2.6.2	Local Hydrogeology	98
2.6.3	Determination of the Base of the Lowermost USDW	97
2.6.4	Base of the Lowermost USDW	99
2.6.5	Water Well Data Sets	99
2.6.6	Local Water Usage	100
2.6.7	Injection Depth Waiver	101
2.7	Geochemistry	102
2.7.1	Formation Brine Properties	102
2.7.2	Compatibility of the CO ₂ with Subsurface Fluids and Minerals	106
2.7.3	Site Specific Geochemical Modeling	111
2.8	Site Suitability Summary	114
3.0 Ao	R and Corrective Action Plan	117
4.0 Fir	nancial Responsibility	118
5.0 Inj	ection Well Construction	119

5.1	Proj	posed Stimulation Program [40 cfr 146.82(a)(9)]	119
5	5.2.1	Casing String Details	120
5	5.2.2	Centralizers	121
5	5.2.3	Annular Fluid	121
5	5.2.4	Cementing Details	122
5	5.2.5	Tubing and Packer Details	122
5.3	Proj	posed Drilling Program	123
5	5.3.1	Soterra IF 1-1 Injection Well	123
5	5.3.2	Soterra IT 2-1 Injection Well	131
5	5.3.3	Wellhead Schematics	139
6.0	Pre-O	perational Logging and Testing	140
7.0	Well (Operation	141
8.0	Testin	ng and Monitoring	142
9.0	Injecti	ion Well Plugging	144
10.0 Post injection Site Care (PISC) and Site Closure			
11.0	11.0 Emergency and Remedial Response		
12.0	2.0 Injection Depth Waiver and Aquifer Exemption Expansion		
13.0	.0 Optional Additional Project Information		
14.0	4.0 Other Relevent Information		
REFE	ERENC	ES	150

LIST OF TABLES

<u>Section 2.0 – Site Characterization</u>

Table 2-A	Listing of Contact Information for Elected Officials Representing St. Helena Parish, Louisiana
Table 2-1	Listing of Local Geologic Maps in Appendix A
Table 2-2	Minimum Effective Shale Porosity in Gulf Coast Environments (Table 2, <i>in</i> Porter and Newsom, 1987)
Table 2-3	Tabulation of Geomechanical Rock Properties - St Helena Parish Site
Table 2-4	Tabulation of data used in Formation Pressure Analysis
Table 2-5	Five Point Prediction
Table 2-6	Fracture Gradient and Operating Pressures – St Helena Parish Site
Table 2-7	Tabulation of Seismic Events in and around Louisiana since 1900 (search performed in November 2022)
Table 2-8	Critical Pressure to Induce Seismicity
Table 2-9	Water Well Tabulation and Data within 6-miles of Proposed Injection Well Sites
Table 2-9A	Water Well Tabulation and Data within Delineated Area of Review Boundary
Table 2-10	Aquifer Uses in Parish and Yields (from White and Prakken, 2016)
Table 2-11	Salinity Values from the Schlumberger Gen-9 Interpretation Nomograph.
Table 2-12	Initial Geochemical Modeling Reactions for Injection Zones

Section 4.0 – Financial Demonstration

Table 4-1 Cost Estimates

Section 5.0 – Injection Well Construction

Table 5-1	Casing String Details - Soterra IF 1-1 (Frio Injector)	
Table 5-2	Casing String Details - Soterra IT 2-1 (Tuscaloosa Injector)	
Table 5-3	Cementing Details	
Table 5-4	Tubing and Packer Details- Soterra IF 1-1 (Frio Injector)	
Table 5-5	Tubing and Packer Details - Soterra IT 2-1 (Tuscaloosa Injector)	
Table 5-6	Proposed Well Fluids - Soterra IF 1-1 (Frio Injector)	
Table 5-7	Surface Casing Cement Program - Soterra IF 1-1 (Frio Injector)	
Table 5-8	Intermediate Casing Cement Program - Soterra IF 1-1 (Frio Injector)	
Table 5-9	Injection Casing Cement Program - Soterra IF 1-1 (Frio Injector)	
Table 5-10	Proposed Well Fluids - Soterra IT 2-1 (Tuscaloosa Injector)	
Table 5-11	Surface Casing Cement Program - Soterra IT 2-1 (Tuscaloosa Injector)	
Table 5-12	Intermediate Casing Cement Program - Soterra IT 2-1 (Tuscaloosa Injector)	
Table 5-13	Injection Casing Cement Program - Soterra IT 2-1 (Tuscaloosa Injector)	
Section 7.0 – Well Operation		
Table 7-1	Proposed Operational Procedures – Soterra IF 1-1 Injection Well	
Table 7-2	Proposed Operational Procedures – Soterra IT 2-1 Injection Well	

LIST OF FIGURES

Section 1.0 – Facility Information

Figure 1-1 Project location – St. Helena Parish, Louisiana

<u>Section 2.0 – Site Characterization</u>

Figure 2-1	Louisiana Stratigraphic column (from Louisiana Geological Society)
Figure 2-2	Type Log –
Figure 2-3	Schematic northwest-southeast cross sections showing the evolutionary stages in the formation of the northern Guld of Mexico and East Texas Basin (modified from Jackson and Galloway, 1984)
Figure 2-4	Distribution of Cretaceous and Cenozoic continental margins in the northwestern Gulf of Mexico (modified from Jackson and Galloway, 1984)
Figure 2-5	Principal sediment sources and depositional systems in the northern Gulf of Mexico during the late Oligocene (modified from Galloway et al., 2000) and location of salt diapirs (modified from Ewing and Lopez, 1991; Lopez, 1995, Martin, 1980).
Figure 2-6	Structural Features of the Northern Gulf Coast Region (from Decade of North American Geology, Volume J, Plate 2, 1991)
Figure 2-7	Regional Published N-S Cross Section M-M' from Louisiana Geological Survey (modified from Bebout and Gutierrez, 1983)
Figure 2-8	Regional Published N-S Cross Section N-N' from Louisiana Geological Survey (modified from Bebout and Gutierrez, 1983)
Figure 2-9	Depositional Systems of the Upper Cretaceous for the Gulf of Mexico Region (from Ewing and Galloway, 2019)

Figure 2-10	Regional Extent of the Tuscaloosa Marine Shale across Louisiana and Mississippi (John et al., 1997)
Figure 2-11	Upper Cretaceous-aged Austin Group regional extent and depositional systems (from Ewing and Galloway, 2019)
Figure 2-12	End of Cretaceous-aged Taylor and Navarro Groups depositional systems impacted by shelf extent and the Olmos and Nacatoch Delta Systems (from Ewing and Galloway, 2019)
Figure 2-13	Regional configuration and thickness trends of the Midway Group. (Hosman, 1996 in USGS Report 1416)
Figure 2-14a	Principal Depositional Systems for the Late Paleocene Lower Wilcox episode (from Ewing and Galloway, 2019)
Figure 2-14b	Principal Depositional Systems for the Late Paleocene Upper Wilcox episode (from Ewing and Galloway, 2019)
Figure 2-15	Regional configuration and thickness trends of the Wilcox Group. (Hosman, 1996 in USGS Report 1416)
Figure 2-16	Regional configuration and thickness trends of the Cane River Formation (Hosman, 1996 in USGS Report 1416)
Figure 2-17	Regional configuration and thickness trends of the Sparta and Equivalent Formations (Hosman, 1996 in USGS Report 1416)
Figure 2-18	Regional configuration and thickness trends of the Cook Mountain Formation (Hosman, 1996 in USGS Report 1416)
Figure 2-19	Regional configuration and thickness trends of the Cockfield and Equivalent Formations (Hosman, 1996 in USGS Report 1416)
Figure 2-20	Regional configuration and thickness trends of the Vicksburg and Jackson Groups (Hosman, 1996 in USGS Report 1416)
Figure 2-21	Paleogeography of the early Frio/Vicksburg and Delta Systems (modified from Ewing and Galloway, 2019)

Figure 2-22	Paleogeography and principal depositional systems of the Lower Miocene depositional episode (from Ewing and Galloway, 2019)
Figure 2-23	Regional configuration and thickness trends of the Miocene Formations (Hosman, 1996 in USGS Report 1416)
Figure 2-24	Regional configuration and thickness trends of the Pliocene Formation (Hosman, 1996 in USGS Report 1416)
Figure 2-25	Surficial Geology Map of Louisiana (Louisiana Geological Survey 2020)
Figure 2-26	Tectonic Map of Southern Louisiana (modified from Gulf Coast Association of Geological Societies, 1972)
Figure 2-27	Topographic Map of the St. Helena Parish Site
Figure 2-28	Locations of Seismic lines used the Site Characterization
Figure 2-29	Cenozoic shelf margin positions at the end of successive depositional episodes (LK – Lower Cretaceous in grey) (modified from Galloway et al., 2000)
Figure 2-30	Wilcox regional study ternary diagram showing the Lower and Upper Wilcox sections within the feldspathic litharenites (Dutton and Loucks, 2014)
Figure 2-31	Density effects on Shale Ductility (from Hoshino et al. 1972)
Figure 2-32	Change in density and ductility of shales with increasing depth (from Hoshino et al. 1972)
Figure 2-33	Three different creep stages illustrated on a Strain vs Time Plot (modified from Brendsdal, 2017)
Figure 2-34	Schematic diagram of stress and strain concepts (from Han, 2021)
Figure 2-35	Principal Horizontal Stresses along the Gulf Coast Region (Nicholson, 2012)
Figure 2-36	Location of data used in the Pore Pressure Analysis
Figure 2-37	Image from the mud log of Weyerhauser SWD No. 2 with gas spike from Tuscaloosa Marine Shale

Figure 2-38	Mud weight analysis from three fields in St. Helena Parish
Figure 2-39	Location of Digital and Sonic Logs used in Fracture gradient analysis
Figure 2-40	Digital Sonic Logs within the area of interest for the St. Helena Parish Site
Figure 2-41	Composite Rock Property Model for Injection Wells
Figure 2-42	Fracture Gradient value ranges for Shmin and Tensile Initiation Point (Figure 6 <i>in</i> Hasuer, 2021)
Figure 2-43	Calculated Shmin, Fracture Gradient and Bore Hole Stability
Figure 2-44	Injection Wells Pore Pressure Fracture Gradient Plot
Figure 2-45	Modified Mercalli Intensity (MMI) Scale (from USGS, 2022)
Figure 2-46	Seismic Risk Map (USGS, 2018)
Figure 2-47	Map of subsurface faults in Louisiana (modified from Louisiana Geological Society, 2001)
Figure 2-48	Regional and Local Seismic Events in and around Louisiana since 1900. Data search compiled in November 2022 from the United States Geological Society (USGS) National Earthquake Database
Figure 2-49	Nearest Seismic event to St. Helena Parish and the Project Site
Figure 2-50	Louisiana Watershed Divisions and Regional River Drainage Basins (from Louisiana Watershed Initiative (2022) and Louisiana Department of Environmental Quality (2007)
Figure 2-51	Principal Aquifer Systems of Louisiana (Louisiana Management of Water Resources, 2020)
Figure 2-52	Major regional aquifers and systems in Louisiana (from USGS, prepared for Louisiana Groundwater Resources Commission, 2009)
Figure 2-53	Hydrostratigraphic Column for the State of Louisiana from the United States Geological Survey

Figure 2-54	Regional Extent of the Sparta Aquifer System within the Mississippi Embayment systems (modified from USGS Fact Sheet 111-02, 2002)
Figure 2-55	Potentiometric surface map of the Sparta Aquifer in north-central Louisiana, March-April 2012 (from McGee and Brantly, 2015)
Figure 2-56	Potentiometric surface map of the MRVA Aquifer (from McGuire et al., 2019)
Figure 2-57	Potentiometric surface map of the massive, upper, and 200-foot sands of the Chicot Aquifer System in southwestern Louisiana, January 2003 (from Lovelace et al., 2004)
Figure 2-58	General Potentiometric Surface of Pleistocene-aged Aquifers - Project Area of Interest in within the Southern Hills Aquifer System (from USGS, 1980)
Figure 2-59	Display of Southern Hills Aquifer System (modified from White, 2017)
Figure 2-60	Localized hydrogeologic stratigraphic column for the Southern Hills Aquifer System for St. Helena Parish (modified from Nyman and Fayard, 1978, Buono, 1983, and Prakken, 2004)
Figure 2-61	North – South Hydrogeologic Cross Section for St. Helena Parish (modified from Tomaszewski, 1988)
Figure 2-62	Display of West – East Hydrogeologic Cross Section I-I' (modified from Griffith, 2003)
Figure 2-63	Potentiometric Map for the Chicot Equivalent Aquifer System in 2009 (from Tomaszewski, 2011 in USGS Scientific Investigations Map 3173)
Figure 2-64	Potentiometric Map for the 1,500-foot and 1,700-Foot (Evangeline Equivalent Aquifer System) in 2003 (from Prakken, 2004 in Scientific Investigations Map 2862)
Figure 2-65	Potentiometric Map for the 2,800-Foot Sand (Jasper Equivalent Aquifer System) in 2006 (from Fendick, 2007 in Scientific Investigations Map 2984)
Figure 2-66	Base of Lowermost USDW map for the St. Helena Parish Site

Figure 2-67	Water Well Map with a 6-mile radius of Investigation
Figure 2-67A	Site Characterization Map - Area of Review of Investigation of Key
	Category Status
Figure 2-68	Water Wells by depth within 6-miles of the Injection Wells
Figure 2-69	Pie Chart of Water Wells by Usage within 6-miles of the Injection Wells
Figure 2-70	Pie Chart of Active Water Wells by Aquifer Usage within 6-miles of the
	Injection Wells
Figure 2-71	Bottomhole Temperature Data and Locations from Drumm and Nunn (2012)
Figure 2-72	Max bottomhole pressures corrected for the St. Helena Parish site
Figure 2-73	Resistivity nomograph for NaCL Solutions (Schlumberger, 1979)

<u>Section 5.0 – Injection Well Construction</u>

Figure 5-1	Proposed Well Schematic - Frio Injector, Soterra IF 1-1
Figure 5-2	Proposed Well Schematic - Tuscaloosa Injector, Soterra IT 2-1
Figure 5-3	Wellhead Schematic

LIST OF APPENDICES

Appendix A	Local Geologic Maps and Cross sections (submitted as CBI)
Appendix B	Data from CoreLabs RAPID TM database used in the Injection Zones Studies ($submitted\ as\ CBI$)
Appendix C	Spontaneous Potential and Resistivity Method for Determination of USDW
Appendix D	Well Technical Specifications (submitted as CBI)
Appendix E	Environmental Justice Report (submitted as CBI)
Appendix F	Subsurface Cleanup Sites - Investigation and Results

INDEX OF SUBMITTED APPLICATION PLANS

GSDT Module	Report Plan Name
Module A - Summary of Requirements	A.1 – Project Narrative
Module B – Area of Review & Corrective Action Plan	B.1 – Area of Review and Corrective Action Plan
Module C – Financial Demonstration	C.1 – Financial Demonstration Plan
Module D – Pre-Operational Testing	D.1 – Pre-Operation Testing Plan
	E.1 – Testing and Monitoring Plan
	E.2 – Injection Plugging Plan
Module E – Project Plan Submission	E.3 – Post-Injection Site Care and Site Closure Plan
	E.4 – Emergency and Remedial Response Plan

1.0 PROJECT BACKGROUND AND FACILITY INFORMATION

1.1 FACILITY INFORMATION

Facility Name: Shell U.S. Power and Gas – St. Helena Parish Site

Two Class VI Injection Wells

Facility Contact: Jason Dupres/U.S. Environmental and Regulatory Lead

150 N. Dairy Ashford Rd, Houston, Texas 77079

(832) 377-0678

Jason.dupres@shell.com

Well Locations:

SOTERRA IF 1-1

SOTERRA IT 2-1

1.2 PROJECT GOALS

Global Goals

Shell U.S. Power and Gas (Shell) is assessing the viability of carbon capture and sequestration (CCS) projects in the Gulf Coast to take carbon dioxide (CO₂) from industrial facilities and inject it safely for permanent storage underground. This Class VI permit is the first of its kind for Shell in the United States but is built on Shell's global CCS experience. Shell is actively working CCS projects in its major hubs of Canada, The United Kingdom, The Netherlands, and China – with active CCS operations in Canada.

Shell is committed to net-zero emissions by 2050, and CCS is one of the key pillars in its energy transition efforts. In April 2020, the Shell CEO announced that "By 2050, Shell intends to be a

Revision Date: February 2023

Module A – Project Information Tracking

net-zero emissions energy company." In line with this goal, Shell is looking at several

technological solutions to help it provide more and cleaner energy while lowering its carbon

footprint. Virtually all credible climate change scenarios suggest the goals of the Paris Agreement

on climate change cannot be met without CCS. Therefore, CCS is one critical piece of Shell's

energy transition plan. Shell has been implementing this technology around the world and is

excited to bring its extensive experience and technical expertise to Louisiana.

Shell is investing in multiple projects to capture and store CO₂ around the world – decarbonizing

multiple businesses. Shell is actively involved in the entire value chain including operating assets,

capturing CO₂, building transport and storage infrastructure, and developing commercial CCS

applications. Shell believes that there are multiple value chains that CCS can enable. For example,

in the Quest project in Alberta, Canada, Shell is capturing CO2 from hydrogen units producing

lower carbon hydrogen. In the Northern Lights project, Norway, Shell is actively working with its

partners to offer CO₂ storage solutions to industrial emitters. In The Netherlands, Shell signed a

contract with Porthos, a joint venture between EBN, Gasunie and the Port of Rotterdam Authority,

to enable the transport and storage of CO₂ from Shell's Pernis refinery. Shell is also active in

research and development programs advancing technology and supporting project deployment

across the globe.

Shell's flagship CCS project is the Quest project in Alberta, Canada. The Shell Canada Quest

project has been in safe and successful operation for over 6 years. Quest captures about one million

tons of CO₂ per annum as per design via pre-combustion capture at three hydrogen manufacturing

units resulting in over 6 million tons (MT) of CO₂ being captured, transported, and stored to date

at a capture unit reliability of 99%. The Quest project stores CO₂ via injection from three wells in

a sandstone rock reservoir more than 2 km (1.3 miles) underground. The Quest project has

exceeded target storage rates in part due to the excellent reservoir characteristics. The Quest

¹ Additional information about Shell's Net Zero Ambitions is available at https://www.shell.com/powering-

progress/achieving-net-zero-

emissions.html#:~:text=Shell's%20target%20is%20to%20become,levels%20on%20a%20net%20basis.

Project Information Tracking for St. Helena Parish Site Class VI Permit Number: R06-LA-0001

Page 14 of 168

Revision Date: February 2023

Module A – Project Information Tracking

development is analogous to the site selected in St. Helena Parish in many ways and the insights

that Shell has gained over the last six years of operation will be utilized to replicate the successes

seen in Alberta, Canada and even improve upon them in St. Helena, Louisiana.

Shell's Louisiana Position

Shell is assessing the viability of CCS projects that would take carbon dioxide from its Louisiana

facilities – and from other companies if capacity allows - and inject it 1 to 3 miles underground

where it would be permanently and safely stored. This would both lower carbon emissions from

existing facilities and reduce CO₂ emissions from new processes to make low-carbon fuels and

other products. Shell has a long history in Louisiana, and we believe CCS is vital to helping build

a new energy future and resilient economy for the state. Shell is committed to helping Louisiana

transition to a cleaner energy future by reducing emissions and investing in new technologies that

will contribute to a vibrant economy.

Shell has a proud and rich heritage in Louisiana, with more than 100 years working with businesses

and communities throughout the state. Louisiana is home to many of Shell's businesses ranging

from oil and gas exploration and production to refining and chemicals along with pipelines needed

for product transportation and trading services to provide products to end customers. The hard

work of Shell's employees helps strengthen the state's economy and deliver vital energy to power

lives around the world. To meet Shell's target for net-zero emissions by 2050 and contribute to

building a new energy future in the state, Shell is working with its stakeholders to keep energy

flowing today and transform its facilities to deliver lower-carbon fuels and products, such as

circular plastics, biofuels, and specialty chemicals. Shell does this with a strong commitment to

protect the places where it operates.

Shell is deeply invested in Louisiana, where it employs close to 3,000 people, over 4,500 retirees

live, and paid more than \$240 million in taxes in 2021. Last year, Shell also invested close to \$6.7

million in projects to help build a better Louisiana, from the environment to health and education

to disaster relief. Shell also made a landmark investment in Louisiana State University to help

establish the Institute for Energy Innovation to advance a reliable, affordable, and environmentally

responsible energy system along with the skills and technologies needed to enable this future.

Project Information Tracking for St. Helena Parish Site

Class VI Permit Number: R06-LA-0001

Page 15 of 168

Revision Date: February 2023

Module A – Project Information Tracking

Shell's employees also contribute thousands of volunteer hours to community projects. Shell looks

forward to nurturing our deep Louisiana roots in the decades ahead as they work together to create

new jobs and invest in the low-carbon technologies that will be so important globally to the future

of energy. Shell believes the successes seen in Alberta Canada can be replicated in St. Helena

Parish, Louisiana.

The Louisiana Gulf Coast has a large network of refineries, chemicals plants, and other industrial

emitters. More than 50 Million Tons Per Annum (MTPA) of CO₂ is emitted from the Louisiana

Gulf Coast, with much of that centered around the lower Mississippi river between Baton Rouge

and New Orleans ². The Shell refining and chemicals assets at Geismar, Convent, and NORCO are

also in this corridor. The objective of this application is to gain authorization for a wide-scale

deployment of CCS by combining carbon capture technology to geologically favorable sites,

where it is intended to deploy safe injection well technology that follow all Class VI Permitting

rules and standards as set forth by the United States Environmental Protection Agency (USEPA).

The Shell Gulf Coast Project seeks to construct a CO₂ Storage Site in St. Helena Parish, Louisiana

to decrease the carbon footprint from existing and future company assets, enable the suite of lower

carbon projects, and help support the decarbonation of other emitters in the region. The proposed

CO₂ storage site will include minimal surface facilities, injection wells, monitoring wells, access

roads and an underground CO₂ injection reservoir. The CO₂ will be transported from the

Mississippi River industry corridor area through an underground pipeline to multiple injection pad

locations targeting the Frio, Wilcox, and Lower Tuscaloosa sandstone formations. This storage

complex in St. Helena Parish represents a significant storage opportunity potentially over a 25-

year project period.

The local geology in St. Helena is described later in this permit, and is favorable for CCS because

it meets the following subsurface requirements:

² LSU Centre for Energy Studies 2021

Project Information Tracking for St. Helena Parish Site Class VI Permit Number: R06-LA-0001

Page 16 of 168

Revision Date: February 2023

Module A – Project Information Tracking

• There are limited legacy wells in the leasehold area reducing associated CO₂ containment

risk.

• Sink depths are favourable at 3,500-14,000 feet True Vertical Depth – Subsea (TVDSS)

for supercritical CO₂ injection which increases site efficiency.

• The sink area has limited faulting and low structural dips (approximately 1-1.5 degrees),

reducing associated CO2 containment risk and keeping the plume localized to a small area.

• There are three potential stacked injection zones improving site capacity and efficiency.

• There is a thick (average ~370 feet), regionally correlative primary confining zone above

the Frio Injection Zone.

• The injection zones are sandstone dominated with heterogeneity that is effective at

providing substantial local trapping and containment of CO₂.

• The minerology of the storage complex and formation water is not reactive with the

injected CO₂ stream.

The following chapters of this Class VI Permit Application will demonstrate the Shell technical

team has performed a commercial, large-scale characterization of the proposed storage site using

currently available published and private data and databases. Additional site-specific data will be

collected during the drilling of two Class V Stratigraphic Test wells to support and validate the

project.

1.2.1 Stratigraphic Test Wells

Shell is planning to drill two stratigraphic test wells, classified as Class V wells under the State of

Louisiana, one for the Frio Formation and one for the Lower Tuscaloosa Formation. These wells

will be drilled at the proposed project injection sites to generate site-specific information about

geologic, hydrogeologic and biogeochemical conditions. Shell plans to convert these appraisal

wells into Class VI injection wells and the wells have been designed accordingly. Using this

approach, Shell expects to minimize the number of well penetrations in the storage complex.

To meet the Class VI required standards for construction, corrosion resistant alloy (CRA) casing

has been selected across the injection intervals and multiple strings of carbon steel casing will be

Project Information Tracking for St. Helena Parish Site Class VI Permit Number: R06-LA-0001

Page 17 of 168

Revision Date: February 2023

Module A – Project Information Tracking

used across all other zones. These appraisal wells will provide detailed geologic characterization

of the proposed injection zones (porosity, permeability and injectivity etc.) and prove the

efficiency of confining zone. Data acquisition will also support requirements of Class VI permit

application including coring, logging, pressure, samples, rock strength and well testing.

1.2.2 CO₂ Stream

The St. Helena Parish site is expected to receive CO₂ from the Shell assets in the Mississippi River

corridor via a high-pressure CO₂ trunk line, which will be distributed by a smaller in field network.

Additional future sources are expected to come from the projects at the same sites supporting the

growth of hydrogen, low carbon fuels, and low carbon chemicals and products. With additional

capacity, Shell can commercially accept other CO₂ sources from third parties, allowing others in

the area to reduce their carbon intensity and create lower carbon end products. All sources of CO₂

will have strict injection specifications and will be purified, dehydrated, and compressed before

entering the pipeline for transportation to the injection wells.

1.2.3 Injection and Confining Zones

In order to assess the feasibility of CO₂ injection into and storage within the Oligocene to Upper

Cretaceous strata of eastern Louisiana, (specifically St. Helena Parish), this project is designed to

answer the following fundamental geological and geophysical questions pertaining to the efficacy

of CO₂ storage in the study area: 1) are there porous horizons with the potential to store Shell's

targeted CO₂ within a 25 year injection period; 2) are the trapping formations structurally

competent enough to contain the injected CO₂ from migrating upward into the overlying aquifers;

3) are the physical and chemical properties of the possible porous horizons conducive for CO₂

injection and permanent storage; and 4) will the injection of CO₂ enhance continuing injectivity or

reduce injectivity.

Shell's integrated study identified potentially three targeted Injection Zones; 1) Frio Formation, 2)

Lower Tuscaloosa Formation, and 3) Wilcox Formation (to be assessed in more detail). Shell has

reviewed seismic data, core databases, geophysical logs, and modeled the potential plume and

critical pressure front at the end of injection (25-years) and post-closure observation (50-years).

Project Information Tracking for St. Helena Parish Site Class VI Permit Number: R06-LA-0001

Page 18 of 168

All three targeted injection zones, as well as the regional seal, are described in their regional, local, and detailed analysis in **Section 2.0 – Site Characterization**.

1.2.4 Injection Wells and Capacity

On the issuance of a Class VI permit from the EPA or the State of Louisiana (once primacy is established), Shell will convert their Class V wells for the Frio and Lower Tuscaloosa Formations. Each injector will be completed on their own pad approximately 5 miles apart (see Figure 1-1).

The Wilcox reservoir, between the deeper Lower Tuscaloosa and shallower Frio
Formations will be appraised during the drilling and testing of the Frio and Lower Tuscaloosa
Injection Wells. This data will be used to determine the capacity and viability of the formation in
the project area. If the data supports, Shell will use this additional reservoir capacity as evaluated
and return for Class VI data such as water sample, core and well testing. The evaluation of the
Wilcox target will be made after the initial appraisal results have been assessed.
. The Wilcox Formation is included as a proposed injection
zone in this permit application as it is situated between the two primary target sinks and has been
adequately studied for future storage.

The Construction and Operations Plan developed by Shell to meet the requirements of 40 CFR 146.82 are presented in Section 5.0 of this narrative. The Injection Well Plugging Plan has been developed to meet the requirements of 40 CFR 146.92. An overview of the injection plugging plan is summarized in Section 9 of this project narrative report. The detailed report is submitted as "E.2 – Injection Plugging Plan" submitted in **Module E.**

Revision Date: February 2023 Module A – Project Information Tracking

1.2.5 Monitoring Program

Pursuant to 40 CFR 146.82(a)(15) and 146.90, Shell has developed a site-specific comprehensive

Monitoring, Measurement and Verification program that will be implemented to verify

containment of the injected CO₂ and non-endangerment to the Underground Source of Drinking

Water (USDW). The monitoring program will cover pre-injection, injection, and post injection site

care (PISC) and site closure phases. It will include monitoring wells in the injection zone, in the

first permeable strata above the confining zone (ACZ), and indirect and direct monitoring of the

plume and pressure front. The monitoring program will cover the St. Helena Parish site, and

considers all CO2 injected into the ground from both the Frio and Lower Tuscaloosa proposed

injection wells, to ensure there are no threats to long-term security of the CO2 storage site. In the

unlikely event of unintended migration, Shell has developed an Emergency and Remedial

Response plan, which has been submitted in detail in Module E.

1.2.6 Project CO₂ Details

CCS in Louisiana is key to decarbonizing Shell's existing assets and is the foundation for a new

Clean Hydrogen business which underpins the creation of ultra-low carbon biofuels ³. Success at

Success at

the St. Helena Parish site is initially enabled by the pure volumes at the Shell Geismar Plant in

Ascension Parish and enables future blue hydrogen and biofuels projects at Convent to supply

Shell biofuels projects. Additional Shell and third-party volumes can drive scale and infrastructure

development that will enable other local businesses to decarbonize – further reducing Louisiana's

CO₂ footprint.

The St. Helena Parish site is expected to receive initial CO₂ from the Shell Geismar Plant via a

high-pressure CO₂ trunk line, which will be distributed by a smaller in field network.

Additional future sources are expected to come from the Shell Convent site, which supports the

growth of blue hydrogen and other 'blue' products. Blue Hydrogen is the process where natural

³ Shell confirms shuttered Convent facility will become an alternative fuels complex | Business | theadvocate.com

Project Information Tracking for St. Helena Parish Site Class VI Permit Number: R06-LA-0001

Revision Date: February 2023

Module A – Project Information Tracking

gas-based hydrogen production is combined with CCS, *i.e.*, when substantial amounts of CO₂ from natural gas reforming are captured and permanently stored the clean hydrogen is categorized as 'blue.' If capacity allows, Shell may commercially accept other CO₂ sources from third parties, allowing others in the area to reduce their carbon footprint. All sources of CO₂ will have strict injection specifications and will be purified, dehydrated, and compressed before entering the

pipeline for transportation to the injection wells.

2.0 SITE CHARACTERIZATION

The geologic suitability of a specific stratigraphic interval for the injection and confinement of carbon dioxide (CO₂) is determined primarily by the following criteria:

- Lateral extent, thickness, interconnected porosity, permeability, and geomechanical properties of the injection zone;
- Lateral extent, thickness, minimal porosity, impermeability, and geomechanical properties of the overlying confining zone;
- Hydrogeologic compatibility of the injected carbon dioxide with the rock formation material and in-situ brine solutions;
- Faulting or fracturing of the injection zone, overlying aquiclude, and confining zone; and
- Seismic risk.

These criteria can be evaluated based on the regional and local depositional and structural histories of the geologic section.

In the following sections, the depositional and structural framework of the sedimentary column (Figure 2-1) utilized for the sequestration of CO₂ at the site St. Helena Parish is outlined. Information has been obtained from the regional and local data interpretations and conclusions of the Area of Review (AoR) study. A type-log of the anticipated formations beneath the sequestration site is included as Figure 2-2. Geologic maps and cross sections illustrating the regional geology, hydrogeology, and the geologic structure of the local area are provided per 40 CFR 146.82(a)(3)(vi) standard.

2.1 REGIONAL GEOLOGY

Figure 2-3 is a series of cross-sections illustrating the evolutionary stages of the development of the northern region of the Gulf of Mexico and East Texas Basin. The first cross section is of the pre-rift phase of the Lower Triassic. Upper Triassic rifting and the deposition of the Eagle Mills (continental red beds) are seen in the second cross section. The third cross section shows continued

Revision Number: 1 Revision Date: February 2023

Module A – Project Information Tracking

rifting in the Middle Jurassic coincident with the deposition of evaporites in restricted marine basins. Finally, cross section four covers the Upper Jurassic and Lower Cretaceous Divergent Margin. The earliest record of sedimentation in the Gulf of Mexico Basin occurred during the Early to Middle Jurassic period, between 200 and 160 million years ago. At this time, the early phases of continental rifting resulted in the deposition of non-marine red beds and deltaic sediments (shales, siltstones, sandstones, and conglomerates) composing the Eagle Mills Formation in a series of restricted, graben fault-block basins. These sediments were unconformably overlain by a thick sequence of Middle Jurassic anhydrite and salt beds, the Werner Anhydrite and Louann Salt (Jackson and Galloway, 1984; Ewing and Galloway, 2019).

The deposition of the Louann Salt beds was localized within major basins that were defined by the major structural elements in the Gulf Coast Basin. The clastic Norphlet Formation (sandstones and conglomerates) overlies the Louann Salt and is more than 1,000 feet thick in Mississippi thinning and fining to the west into a sandstone and siltstone across Louisiana and into Texas. Norphlet conglomerates were deposited in coalescing alluvial fans near Appalachian sources grading downdip into dune and interdune sandstone deposited on a broad desert plain (Mancini et al., 1985). Although the Norphlet Formation is non-fossiliferous, based on dating of the overlying and underlying sequences, the Norphlet Formation is late Middle Jurassic (Callovian) in age (Todd and Mitchum, 1977).

Shallow-water carbonate and clastic rocks of the Smackover, Buckner, and Haynesville Formations and the Cotton Valley Group were deposited over the Norphlet Formation from the Late Jurassic into the early Cretaceous. Jurassic, non-skeletal, carbonate sands and muds accumulated on a ramp-type shelf with reefal buildups developed on subtle topographic highs (Baria et al., 1982). A high terrigenous clastic influx in eastern Louisiana and Mississippi occurred during deposition of the Haynesville and diminished westward where the Haynesville Formation grades into the Gilmer Limestone in East Texas. The top of the Jurassic occurs within the Cotton Valley Group, with the Knowles Limestone dated as early Cretaceous (Berrasian) in age (Todd and Mitchum, 1977). The early to middle Cretaceous was a period of tectonic stability and low terrigenous sediment influx, permitting the development of extensive, shelf-edge reef complexes (Baria et al., 1982).

Revision Date: February 2023

Module A – Project Information Tracking

In the Mid to Late Cretaceous, tectonism resulted in uplift in western United States and northern Mexico resulted in a large influx of terrigenous sands and muds into the Gulf of Mexico Basin.

Uplift mechanisms likely include movement of the North American plate over the Bermuda

hotspot in mid-Cretaceous, the Laramide Orogeny, between 70-80 and 35-55 million years ago,

and the Ouachita Uplift, all of which contributed to early erosion and subsequent deposition of

sediments of the Washita-Fredericksburg and Tuscaloosa Formations (Cox, R.T. and Van Arsdale,

R.B., 2002; Sneddon et al., 2015; Ewing and Galloway, 2019). This effectively shuts off the

production of carbonates, except in the Florida and Yucatan regions. Note that since the Cretaceous

period, the rate of terrigenous sediment influx has been greater than the rate of basin subsidence,

resulting in a significant progradation of the continental shelf margin (Figure 2-4).

During the Cretaceous post-rift stage, structural highs and lows were formed (or in the case of the

Sabine Uplift and Wiggins Arch were reactivated) resulting in regional angular unconformities in

the northern onshore Gulf of Mexico Basin. The Sabine Uplift, Monroe Uplift, Wiggins Arch, and

Jackson Dome all experienced some degree of igneous activity during the late Cretaceous (Ewing,

2009). Mesozoic igneous activity of the onshore Northern Gulf of Mexico Basin was examined

and discussed in multiple studies and local reports (Kose, 2013; Byerly, 1991; Kidwell, 1951;

Moody, 1949; Ewing, 2009; Nichols et al., 1968). The Monroe Uplift has the largest volume of

magma and the greatest compositional diversity in the Northern Gulf of Mexico Basin with at least

four major igneous rock groups have been defined thus far: 1) intermediate rocks; 2) alkaline rocks;

3) basalts; 4) lamprophyres (Ewing, 2009; Kidwell, 1951). It is not well understood why igneous

activity occurred but there appears to be a relation between igneous activity and the movement of

the uplift in the Monroe Uplift area (Ewing and Lopez 1991; Kidwell, 1951).

During the Cenozoic era, the geometry of the deposition in the Gulf of Mexico Basin was primarily

controlled by the interaction of the following factors:

1. Changes in the location and rates of sediment input, resulting in major shifts in the location

of areas of maximum sedimentation.

2. Changes in the relative position of sea level, resulting in the development of a series of

large-scale depositional cycles throughout Cenozoic time.

Project Information Tracking for St. Helena Parish Site Class VI Permit Number: R06-LA-0001

Page 24 of 168

Revision Date: February 2023 Module A – Project Information Tracking

3. Diapiric intrusion of salt and shale in response to sediment loading.

4. Flexures and growth faults due to sediment loading and gravitational instability.

During the first 35 million years of Cenozoic deposition, the Gulf Coast Region in general experienced four major eustatic events. These major high stands events are marked by the Midway

Shale, Cane River Shale, Cook Mountain Shale, and Jackson-Vicksburg Shale.

Early Tertiary sediments are thickest in the Rio Grande Embayment of Texas, reflecting the role

of the ancestral Rio Grande and Nueces Rivers as sediment sources to the Gulf of Mexico. By

Oligocene time, deposition had increased to the northeast, suggesting that the ancestral Colorado,

Brazos, Sabine, and Mississippi Rivers were increasing in importance (Figure 2-5). Miocene time

is marked by an abrupt decrease in the amount of sediment supply entering the Rio Grande

Embayment, with a coincident increase in the rate of sediment supply in southeast Texas,

Louisiana, and Mississippi. Throughout the Pliocene and Pleistocene epochs, large depocenters of

sedimentation were controlled by the Mississippi River and developed offshore of Louisiana and

Texas.

Tertiary sediments accumulated to great thickness where the continental platform began to build

toward the Gulf of Mexico, beyond the underlying Mesozoic shelf margin and onto transitional

oceanic crust. Rapid loading of sand on water-saturated prodelta and continental slope muds

resulted in contemporaneous growth faulting (Loucks et al., 1986). The effect of this

syndepositional faulting was a significant expansion of the sedimentary section on the downthrown

side of the faults. Sediment loading also led to salt diapirism, with its associated faulting and

formation of large salt withdrawal basins (Galloway et al., 1982a).

Sediments of the Tertiary progradational wedges were deposited in continental, marginal marine,

nearshore marine, shelf, and basinal environments and present a complex depositional system

along the Gulf Coast. Overlying the Tertiary progradational wedges along the Gulf Coast are the

Pleistocene and Holocene sediments of the Quaternary Period. Pleistocene sedimentation occurred

during a period of complex glacial activity and corresponding sea level changes. As the glaciers

made their final retreat, Holocene sediments were being deposited under the influence of an

Project Information Tracking for St. Helena Parish Site Class VI Permit Number: R06-LA-0001

Page 25 of 168

Revision Date: February 2023

Module A – Project Information Tracking

irregular, but rising, sea level. Quaternary sedimentation along the Texas Gulf Coast occurred in

fluvial, marginal marine, and marine environments.

2.1.1 Regional Maps and Cross Sections

The preceding overview section outlined the main tectonic and depositional events controlling the

architecture of the Gulf of Mexico Basin. In this section, regional geology will be described in

more detail through the use of regional maps and cross sections.

Figure 2-6 is a published regional map illustrating the structural features of the Northern Gulf

Coast of Mexico modified from the published Decade of North American Geology (1991). The

positive structural elements in the East Texas, Louisiana, and Mississippi region are the Sabine

Uplift, Monroe Uplift, La Salle Arch, Jackson Dome, and the Central Mississippi Deformed Belt,

and the Wiggins Uplift. The negative structural elements are the East Texas Basin, North Louisiana

Salt Basin, and the Mississippi Salt Basin.

The regional geology section is based upon available published maps and cross sections, as well

as published studies on the formation and deposition of the Gulf of Mexico. The data evaluated

covers the Gulf Coast Region and the State of Louisiana. These regional maps are contained as

"Figures" referenced within their respective description sections as follows. Figure 2-7 and Figure

2-8 are published North-South regional cross sections with a location index map from Bebout and

Gutierrez (1983). The north-south cross sections M-M' and N-N' illustrates the increase in the

southernly regional dip towards the Gulf of Mexico.

2.1.2 Regional Stratigraphy

The regional stratigraphy of the Gulf of Mexico Basin is well documented throughout Louisiana

and is presented on Figure 2-1. The following sections describe the regional formations that may

be penetrated in the St. Helena Parish sequestration site. These formations are described in

ascending order beginning with the Upper Cretaceous-aged Tuscaloosa Group.

For the Shell St. Helena Parish site, the proposed zones for sequestration are as follows:

• Injection Zone 1 – Frio Formation

Project Information Tracking for St. Helena Parish Site Class VI Permit Number: R06-LA-0001

Page 26 of 168

Revision Number: 1 Revision Date: February 2023

Module A – Project Information Tracking

• Injection Zone 2 – Wilcox Formation

• Injection Zone 3 – Lower Tuscaloosa

Each of the targeted Injection Zones are overlain by regionally extensive Confining Shales and

Sealing units that will impede the vertical migration of fluids out of the sequestration zone. This

has been identified as the following:

• Confining Zone 1 – Frio, Anahuac, and Lower Miocene Shales

The Anahuac Formation is a regionally extensive confining zone that is present south of the

sequestration project at shallow depths and extends to the Gulf of Mexico. It is not present to the

north of the target site. Specific details on the characteristics of each formation are discussed in

Section 2.3 – Description of Confining and Injection Zones of this document.

2.1.2.1 Tuscaloosa Group

The period of Tuscaloosa deposition is characterized by a full transgressive cycle event during the

Late Cretaceous (Pair, 2017). The Tuscaloosa is subdivided into two formations, an Upper and a

Lower. In southern Mississippi and central-eastern Louisiana area, the Lower Tuscaloosa

Formation unconformably overlies the Washita-Fredericksburg group. The formation is bounded

above uncomfortably by the Eutaw Formation in Alabama and Mississippi and conformably

overlain by the Eagle Ford Shale in Louisiana (Woolf, 2012).

2.1.2.1.1 Lower Tuscaloosa

In southwest Mississippi and southeast Louisiana, the Lower Tuscaloosa Formation contains non-

marine and marine facies (Berg and Cook, 1968; Chasteen, 1983; Hearne and Lock, 1985;

Stancliffe and Adams, 1986; Shirley, 1987). The Lower Tuscaloosa may then be further

subdivided into three sections, from oldest to youngest: the Massive Sand member; the Marine

section; and the Stringer (also referred to as the shale and sand) section. The non-marine facies are

the Lower "Massive" Tuscaloosa Sand, which is composed of a basal braided stream deposit and

a meander belt point-bar complex transitioning downdip into deltaic deposits. Figure 2-9 from

Ewing and Galloway (2019), demonstrates that the transition between these environments lies in

the vicinity of the Mississippi-Louisiana border.

Page 27 of 168

Revision Date: February 2023

Module A – Project Information Tracking

The Lower Tuscaloosa "Massive" Sand is composed of stacked massive sandstones with few well-

defined shale breaks. Chert-conglomerate is commonly present at the base of the stacked channel

sand (Chasteen, 1983). The Lower Tuscaloosa "Massive" Sand sediments are structureless, well-

sorted, micaceous, locally fossiliferous (marine bivalves), calcareous, glauconitic, fine-grained,

and quartz rich. All of these characteristics are indicative of a more marginal marine (more

downdip equivalent) environment of deposition than the lower Tuscaloosa section in southwestern

Mississippi and eastern Louisiana (Mancini et al., 1987). The stacking of channel sandstones with

basal conglomerates is typical of a braided-stream environment. Regional isopach maps of the

braided-stream unit show a sheet-like geometry with thick sand areas corresponding to persistent

drainage patterns where major streams existed (Chasteen, 1983). Overlying the braided-stream

deposits are meander belt point bar and associated facies deposits.

The overlying marine facies includes the "Marine" and "Stringer" sections. It is composed of

sandstones interbedded with siltstones and shales that exhibit intense bioturbation. This intense

bioturbation suggests deposition in shallow water, brackish to marine environment. In addition,

cores and sample logs commonly record the presence of oysters as solitary and bedded forms in

the shales, which would support a shallow-water marine origin for the unit (Chasteen, 1983).

Sandstones in the marine interval of the Lower Tuscaloosa Formation are generally thin, exhibit a

lenticular nature, and are commonly intensely bioturbated (Chasteen, 1983).

The "Stringer" section consists of alternating gray, fine to medium grained sandstones with

associate gray and red, silty shales. In Southern Mississippi, these sandstones are found at depths

of 10,000 to 12,000 feet. This is interpreted as estuarine facies capping the earlier sequences of

fluvial deposits filling broad incised valleys associated with uplift at the mid-Cretaceous (Woolf,

2012; Ambrose et al., 2015). They are variable in thickness, discontinuous, and exhibit sinuous

patterns on sand isopach maps (Devery, 1980).

2.1.2.1.2 Tuscaloosa Marine Shale

Continued transgression, caused by a major global rise in sea level during the early Late

Cretaceous, inundated the marginal marine Tuscaloosa sequence, leading to the deposition of

middle marine shales of the Middle (Tuscaloosa Marine Shale) and Upper Tuscaloosa (Vail et al.,

Project Information Tracking for St. Helena Parish Site

Class VI Permit Number: R06-LA-0001

Page 28 of 168

Revision Number: 1 Revision Date: February 2023

Module A – Project Information Tracking

1977; Stancliffe and Adams, 1986). The Tuscaloosa Marine Shale (TMS) is composed almost

entirely of a grey to black, fissile, and sometimes sandy marine shale which thickens down dip

(John et al., 1997). The TMS represents the flood stage (end transgressive system) and is regionally

extensive across Louisiana and into Mississippi (Figure 2-10).

The Tuscaloosa Marine Shales along the basin contain a diverse assemblage of macrofossils,

including ammonites, gastropods, inoceramids, other bivalves, and a rich assemblage of planktonic

foraminifera and calcareous nannofossils typical of Cretaceous open-shelf environments (Mancini

et al., 1987). Microfauna analysis of samples from Liberty Field in Amite County, Mississippi

(just north of St. Helena Parish), presents a vertical change from a fauna dominated by the

agglutinated species Ammobaculites and Trochammina to one characterized by the calcareous

species Heterohelix and Lenticulina (Stancliffe and Adams, 1986). This faunal succession suggests

a transition from restricted marine to open marine neritic conditions for Middle and Upper

Tuscaloosa shales (Stancliffe and Adams, 1986). Fluvial deposition was confined to extreme updip

positions in the northern Gulf of Mexico Basin (Chasteen, 1983).

2.1.2.1.3 Upper Tuscaloosa

The Upper Tuscaloosa is separated by the Lower Tuscaloosa by a major unconformity, with the

Lower Tuscaloosa wedging out updip and being overlapped by the Upper Tuscaloosa (McGlothlin,

1944). The Upper Tuscaloosa formation consists of glauconitic, fossiliferous, sandstone

interbedded with shale units. The formation has characteristics of an open marine and marginal

marine depositional environment and has an average thickness of approximately 375 feet. The

Upper Tuscaloosa is a southward thinning wedge which complements the northward thinning

middle Tuscaloosa marine shale wedge (Spooner, 1964). The Upper Tuscaloosa in Mississippi is

limited on the northeast by its outcrop, but underlies the balance of the state, except where it

truncates on the flank of the Sharkey platform. It also overlies the Jackson Dome in Mississippi

and has been pierced by salt domes in the Mississippi Salt Basin.

2.1.2.2 Eagle Ford Group

The Eagle Ford is one of the most prolific and actively explored oil and gas shale plays in the

USA. It is the source of many conventional plays and is also an exploited unconventional resource

Project Information Tracking for St. Helena Parish Site

Class VI Permit Number: R06-LA-0001 Page 29 of 168

Revision Date: February 2023

Module A – Project Information Tracking

throughout Texas. During the Late Cretaceous period, a large swath of central North America

(including Texas, Louisiana, and Mississippi) was submerged below the Western Interior Seaway.

The Eagle Ford was deposited during this global eustatic sea level rise in a marine shelf,

transgressive environment. The organic rich shales of the Eagle Ford in Louisiana can be

characterized as a fossiliferous, calcareous mudstone with authigenic minerals such as framboidal

pyrite, glauconite, and apatite (Donovan and Staerker, 2010; Dawson, 2000). To the north, in

Mississippi, the Eagle Ford is part of the Lower Eutaw Formation grading into micaceous,

calcareous, glauconitic, fine-grained sandstone near the updip marine margin (Mancini et al.,

1987). The formation is truncated wedge of deep-water shale (where present) in front of the shelf

margin. In these locations, the top of this group is an unconformity overlain by the Austin chalk,

which was deposited in deeper water.

2.1.2.3 Austin Group

The Upper (late) Cretaceous aged Austin Group (also referred to as the Austin Chalk) is present

throughout Texas, Louisiana, and Mississippi and was deposited during a global highstand event

(Figure 2-11). In relation to the Early Cretaceous shelf edge (located south of the St. Helena parish

site) paleowater depths deepened towards the basin, to the south-east. In Texas, the Austin Chalk

deposited in shallow marine waters with paleodepths ranging from 30 to 300 feet. These

paleowater water depths indicate that carbonates deposited below storm wave base on the inner-

middle shelf environment and deeper (Pearson, 2012). The Planolites, Thallasinoides, and

Chondrites trace fossils observed by Dawson and Raser (1990) also suggest an open marine

environment of deposition with normal salinity. Folk (1959) classified the Austin Chalk as a

biomicrite comprised of *coccolithophores* (Dawson et al., 1995).

Depositional environments across Louisiana include distributary channels (overlying the Eagle

Ford Shale or Group), prodelta, transgressive marine settings, shallow marine bars, shoreface to

barrier or beach complexes, and marsh or tidal flats and channels. Bioturbation, storm deposits,

soft-sediment deformation, rip-up clasts, volcanic clasts, and glauconite are all present (Clark,

1995).

Project Information Tracking for St. Helena Parish Site Class VI Permit Number: R06-LA-0001

Page 30 of 168

Revision Date: February 2023

Module A – Project Information Tracking

The Austin Chalk is divided into the Lower chalk, Middle marl, and Upper chalk and ranges in

thickness from 150 to 800 feet. The Lower chalk is characterized as having thicker alternating

chalks transitioning into thinly laminated organic rich marl. The marls contain pyrite and high

Total Organic Carbon (TOC) (3.5%) suggesting deposition in a dysaerobic basin during a

transgressive interval. The thicker chalk units are likely deposited during highstands in the Lower

chalk. The Middle marl has alternating packages of clay and burrowed chalk. The older strata

deposited during a regressive phase while the younger units deposited during a transgressive phase

(Hovarka and Nance, 1994). Relative to the Lower chalk, the Middle marl has higher proportions

of light-colored clays. The formation also contains cyclic layers of chalk and marl; however, they

are less regular and apparent. The Upper Chalk was deposited during a highstand, and trace fossil

assemblages indicate normal marine waters (Hovarka and Nance, 1994).

2.1.2.4 Taylor Group

The Late Cretaceous global rise in sea level reached its maximum extent soon after the end of

Eutaw deposition. Much of the Gulf Coast (including most of Mississippi) was inundated and

remained below sea level through the end of Cretaceous time.

The Campanian/Maastrictian-aged Taylor Group is separated from the Austin Chalk by a regional

disconformity at the base of the unit. Figure 2-12 is a paleogeographical map illustrating conditions

during the deposition of the Taylor Group from Ewing and Galloway, 2019. The Lower Taylor

Group is comprised of mud, calcareous claystone, and fossiliferous limestone indicating deposition

in a deeper marine environment. Outcrops in Arkansas record glauconite, shells, and phosphorite

which are characteristic of a condensed zone. Though the sea levels were relatively high, there

were smaller fluctuations in sea level. The short episodes of sea level falls renewed sandy

terrigenous sediment influx in the Upper Taylor in a shallow shelf and shoreface environment

(Galloway, 2008).

In the area of northern Louisiana, sedimentation took place on the submerged Lower Cretaceous

shelf during the Campanian. This deposition period was dominated multiple chalk series (Ozan,

Annona, and Marlbrook Formations) that comprise the Taylor Group and are extensive throughout

central and northern Louisiana. The Taylor Group then transitions into the Navarro Group with a

Project Information Tracking for St. Helena Parish Site Class VI Permit Number: R06-LA-0001

Page 31 of 168

Revision Date: February 2023

Module A – Project Information Tracking

gradation of chalks to marls, which corresponds with the changes of sea level at time of deposition.

However, the Gulf Coast was still inundated and remined below sea-level through the end of

Cretaceous time.

2.1.2.5 Navarro Groups

The Uppermost Cretaceous-aged Navarro Group overlies the Taylor Group and is bound at the

base by a maximum flooding surface, recording the end of a marine transgression and bound at

the top by an erosional unconformity. As sea levels were falling, the Navarro Group records a

forward stepping progradational and shoaling event dominated by siliciclastic material provided

from the Olmos Delta and Nacatoch clastic system (Figure 2-12). Lag deposits on the bounding

erosional surface consist of shell debris, fish, shark teeth, and mud clasts that indicate deposition

in a nearshore to inner shelf paleoenvironment (Galloway, 2008). The Nacatoch delta and shore-

zone system provided a clastic pulse to north-east Texas, south-west Arkansas and North-west

Louisiana, while the larger Olmos delta prograded across the Rio Grande embayment from

northern Mexico (Galloway, 2008).

The Navarro Group extends through East Texas, Louisiana, and Arkansas and contains

interbedded layers of sandstone, mudstone, and marls. In northeast Texas, from oldest to youngest,

the Navarro Group is comprised of the Neylandville Marl, Nacatah Sand, and Kemp Clay

Formations. The Neylandville Formation is a gray marl with calcareous sands that has a varying

thickness of 50 to 400 feet. The Nacatoch Formation consists of massive calcareous sandstones

and mudstones, sourced from the East Texas Embayment, and can range in thickness from 100 to

200 feet in East Texas and 400 feet in Arkansas (Esker, 1968; Adkins, 1933). The Kemp Clay

formation (Arkadelphia Marl equivalent in Louisiana) is characterized as greenish to gray silty

calcareous mudstone that contains glauconite (Martin, 2014).

In Arkansas and Louisiana, the Navarro Group is split into the Saratoga Chalk (Arkansas),

Nacatoch Sand, the Arkadelphia Marl, and Selma Chalk (Louisiana) Formations in ascending

order. The Selma Chalk Formation is laterally extensive throughout central and north Louisiana

and was deposited in a relatively shallow epicontinental sea and consists of chalk, marl, shale, and

Project Information Tracking for St. Helena Parish Site Class VI Permit Number: R06-LA-0001

Page 32 of 168

Revision Date: February 2023

Module A – Project Information Tracking

minor beds of sandstones. The Late Cretaceous Sea remained relatively shallow throughout

deposition of the Selma Formation, with sedimentation and subsidence in near equilibrium.

2.1.2.6 Midway Group

The Paleocene-aged Midway Group sediments were deposited during the first major Tertiary

regressive cycle. The Midway shale is regional in extent, thickening from the East Texas Basin

toward the Gulf of Mexico. The Midway Group is a thick calcareous to non-calcareous clay,

locally containing minor amounts of sand. Conformably overlying marine Cretaceous sediments

within the Midway Group is the Clayton Formation. The faunal succession across the Upper

Cretaceous/Tertiary boundary shows a sharp break in both macro-fauna and micro-fauna types,

making it possible to accurately determine the base of the Tertiary in the Gulf Coast Basin

(Rainwater, 1964a). At the beginning of the Tertiary, an epicontinental sea still covered most of

the Mississippi Embayment, with the Clayton Formation being deposited in an open marine

environment. The unit is generally less than 50 feet thick and is composed of thin marls, marly

chalk, or calcareous clays (Rainwater, 1964a).

As the epicontinental sea became partially restricted in the Mississippi Embayment, the Porters

Creek clay was deposited on the Clayton marl. Fossil evidence, although scarce, indicates a

lagoonal to restricted marine environment for the Porters Creek Formation (Rainwater, 1964b).

The Porters Creek Formation is composed mainly of massively bedded montmorillonite clay. Open

marine circulation was re-established in the Mississippi Embayment during the deposition of the

shallow marine Matthews Landing Formation. The Matthews Landing Formation was deposited

above the Porters Creek clay in a shallow marine environment and is composed primarily of

fossiliferous, glauconitic shales with minor sandstone beds (Rainwater, 1964a).

A major regression marks the deposition of the late Paleocene Naheola Formation that overlies the

Matthews Landing Formation. Uplift in the sediment source areas of the Rocky Mountains and

Appalachian regions supplied an abundance of coarse-grained fluvial sediments for the first time

in the Tertiary. Sedimentation rates along the Gulf Coast exceeded subsidence rates and produced

the first major regressive cycle in the Tertiary. Alluvial environments dominated throughout most

Project Information Tracking for St. Helena Parish Site

Class VI Permit Number: R06-LA-0001 Page 33 of 168

Revision Date: February 2023

Module A – Project Information Tracking

of Naheola time. The Naheola Formation consists of alternating sand, silt, and shale, with lignite

interbeds near the top of the unit (Rainwater, 1964a).

The upper contact with the overlying Wilcox Group is gradational. Wood and Guervara (1981)

defined the top of the Midway as the base of the last Wilcox sand greater than 10 feet thick. The

precise thickness of the Midway is difficult to measure because it often cannot be differentiated

from the underlying upper Navarro Group (Upper Cretaceous) using electric logs but overlies the

Selma Chalk. The Midway, upper Navarro Clay (also called Kemp Clay), and the Navarro Marl

are generally grouped together during electric log correlations. These formations compose a low-

permeability hydrologic unit in the regional area greater than 900 feet thick. The marine clays of

the Midway Group grade upward into the fluvial and deltaic sediments of the Wilcox, which is

composed of interbedded lenticular sand, mud, and lignite (Fogg and Kreitler, 1982).

The Midway-Navarro section serves as an aquiclude, isolating the shallower freshwater Eocene

aquifers from the deeper saline flow systems. Exceptions to the confining ability of the Midway-

Navarro include at fault zones and along flanks of salt domes where vertical avenues for flow may

exist (Fogg and Kreitler, 1982). In a regional map published from Hosman, 1996 (Figure 2-13) the

Midway continues to thicken to greater than 2,000 feet towards the Gulf Coast at depths exceeding

14,000 feet. Outcrops of the Midways exist from north-central Alabama up into Tennessee in the

east.

2.1.2.7 Wilcox Group

The Paleocene-aged Wilcox Group is a thick clastic succession that flanks the margin of the Gulf

Coast Basin. This geologic group contains fluvial and deltaic channel-fill sand bodies distributed

complexly in a matrix of lower permeability inter-channel sands, silts, clays, and lignites. Most of

the sands are distributed in a dendritic pattern, indicating a predominately fluvial depositional

environment (Fogg et al., 1983).

The Wilcox Group is divided into the Lower, Middle, and Upper intervals. The semi-regional

Yoakum Shale divides the Upper and Middle Wilcox, and the Big Shale Marker separates the

Middle and Lower Wilcox. During Wilcox Group deposition, the Laramide Orogeny displaced the

Paleocene shelf eastward from the relict Lower Cretaceous reef and formed Laramide uplands

Project Information Tracking for St. Helena Parish Site

Class VI Permit Number: R06-LA-0001

Page 34 of 168

Revision Date: February 2023

Module A – Project Information Tracking

which sourced the majority of sediment (Galloway et al., 2000; Galloway et al., 2011). The East

Texas Basin ceased to be a marine basin during the Tertiary and Quaternary Periods, when major

Eocene, Oligocene, Pliocene, and Pleistocene depocenters shifted toward the Gulf of Mexico.

The Lower Wilcox sediments were transported via two ancestral fluvial-dominated delta systems

in the central Gulf; the Houston Delta and the Holly Springs Delta (Figure 2-14a) (Ewing and

Galloway, 2019). This is a major Gulf Coast prograding delta system located primarily in the

ancestral Mississippi trough that encompassed central Louisiana and southern Mississippi

(Galloway, 1968). The Houston Delta, supplied by a bed-load fluvial system, was the largest and

was sand dominated. East of the Houston Delta, shore-zone facies deposits separated the Houston

Delta from the smaller Holly Springs Delta system. The Holly Springs Delta was the first Cenozoic

Delta to be aligned with the axis of the later Central Mississippi fluvial-delta system. The very

high rate of sediment influx (150,000 km³/Ma) rapidly prograded the delta and shore-zone deposits

towards the shelf edge and offlapping onto the continental slope (Galloway et al., 2000; Galloway

et al., 2011).

Two transgressive events bound the Middle Wilcox at the base and top. The early transgressive

event deposited the Big Shale, and the later transgressive episode deposited the Yoakum Shale.

During Middle Wilcox deposition (Late Paleocene-Early Eocene), the LaSalle wave-dominated

delta and the fluvially-dominated Calvert delta supplied sufficient sediment to prograde the

ancestral Gulf shelf (Galloway et al., 2000). Relative to the Lower Wilcox, the Middle Wilcox

sedimentation rate was roughly half (Galloway et al., 2000; Galloway et al., 2011).

During Upper Wilcox deposition, a wave-dominated delta in the Mississippi axis prograded onto

the central Gulf shelf. Reworking shifted the delta westward and deposited shelf and shore zone

sands covering the central Gulf (Figure 2-14b). An increase in the carbonate content and glauconite

content in upper Wilcox sediments suggests an increase in marine conditions compared to lower

Wilcox. An examination of Wilcox hydrocarbon producing trends in Louisiana and Mississippi

led Paulson (1972) to conclude that the Wilcox is a transgressive sequence.

Figure 2-15 provides a published regional isopach and configuration map of the Wilcox Group

from Hosman, 1996 as presented in the USGS Report 1416. The composite thickness of the Wilcox

Revision Date: February 2023

Module A – Project Information Tracking

Group is about 3,000 feet in east-central Louisiana (Galloway, 1968) and thickens to the south and

can reach a maximum thickness of 4,000 feet (Lowry, 1988). Thickness trends mimic the

Mississippi Embayment in the northeast and thicken to the south and southwest at the front of the

Holly Springs Delta System.

2.1.2.8 Claiborne Group

The Claiborne Group of the Gulf Coastal Plain is widely thought of as a classic example of strata

produced by alternating marine-nonmarine depositional cycles (Hosman, 1996). There are

multiple sand and shale units that have been identified across the region that were deposited during

the Eocene. These are (in ascending order) the Cane River Formation, the Sparta Sand, the Cook

Mountain Formation, and the Cockfield Formation.

Cane River Formation

The Cane River Formation represents the most extensive marine influx during Claiborne time. In

the central part of the Mississippi Embayment (Arkansas, Louisiana, and Mississippi), the

formation is composed of marine clays and shales. It is glauconitic and calcareous in part, as well

as containing sandy clay, marl, and thin beds of fine sand. Well-developed sand bodies are found

only around the margins of the Mississippi Embayment. Regionally, the sand percentage decreases

markedly to the south and southwest, so that in southeastern Arkansas, southwestern Mississippi,

and all of Louisiana, the Cane River Formation contains virtually no sand. Along the flanks of the

Mississippi embayment and over the Wiggins arch area the formation is generally 200 to 350 feet

thick (Payne, 1972). It ranges from a thickness of 200 feet to 600 feet and deepens in bands towards

the Gulf of Mexico (Figure 2-16). The Cane River is absent of the regional Sabine Uplift structure

in the northwestern part of Louisiana. In the northern Louisiana region, the Cane River Formation

acts as an additional regional confining unit, isolating the upper Sparta Aquifer from the deeper

saline formations.

Sparta Formation

The Sparta Formation is one of the Gulf Coastal Plain's most recognized geologic units. Overlying

the Cane River Formation, the Sparta extends northward to the central part of the Mississippi

Project Information Tracking for St. Helena Parish Site

Class VI Permit Number: R06-LA-0001

Page 36 of 168

Revision Date: February 2023

Module A – Project Information Tracking

Embayment deposited in a deltaic to shallow marine environment. The Sparta sand is composed

of mostly very fine to medium unconsolidated quartz that is ferruginous in places to form limonitic

orthoquartzite ledges. It is primarily beach and fluviatile sand with subordinate beds of sandy clay

and clay. The Sparta ranges in thickness from less than 100 feet in outcrop (east and west) to more

than 1,000 feet near the axis in the southern part of the Mississippi Embayment (Hosman, 1996,

Figure 2-17). The Memphis sand is the equivalent formation in the northern part of Arkansas and

southern Tennessee. Outcrops of the Sparta sands are in north central Louisiana along the edge of

the Sabine Uplift. Note: that the Sparta is not deposited across this structural high.

Cook Mountain Formation

The Cook Mountain Formation is predominantly a marine deposit that is present throughout the

Gulf Coastal Plain. It is generally less than 200 feet thick in the Mississippi Embayment but

thickens in Southern Louisiana and Texas to more than 900 feet (Figure 2-18). Along the central

and eastern Gulf Coastal Plain, the Cook Mountain Formation is composed of two lithologic units

(Hosman, 1996). The lower unit is glauconitic, calcareous, fossiliferous, sandy marl or limestone.

The upper unit is sandy carbonaceous clay or shale which is locally glauconitic. The Cook

Mountain Formation thickens downdip as the clay facies gradually becomes the predominant

lithologic type.

Cockfield Formation

Lithologically similar to the Wilcox Group, the Cockfield Formation is present throughout most

of the Gulf Coastal Plain, but less expansive in the interior than the other units in the Claiborne

Group (Figure 2-19). Its Texas equivalent is the Yegua Formation. It is composed of discontinuous

and lenticular beds of lignitic to carbonaceous, fine to medium quartz sand, silt, and clay (Hosman,

1996). The Cockfield is generally sandier in the lower part. It is non-marine in origin and is the

youngest continental deposit of the Eocene Series in the Gulf Coastal Plain. The Cockfield is

thickest in the west-central part of Mississippi, with thicknesses ranging from 10 to 550 feet as it

thins east and southeast as is shown by Hosman, 1996.

Project Information Tracking for St. Helena Parish Site Class VI Permit Number: R06-LA-0001

Page 37 of 168

Revision Date: February 2023 Module A – Project Information Tracking

2.1.2.9 Jackson Group

The Eocene-aged Jackson Group was deposited during a regional transgressive episode which

flooded the Gulf and retracted the ancestral Fayette delta landward. This landward shift of the

Fayette delta reduced extra-basinal sediment supply and spread muddy shelf deposits extending

from the Central Gulf to the Mississippi Embayment (Galloway et al., 2000). The Jackson Group

extends from Texas to western Alabama in the Gulf Coast. The northern and southern terrigenous

facies of the lower Jackson Group was formed as a destructional shelf facies by reworking of the

upper surface of the Claiborne delta systems (Dockery, 1977). In Louisiana, this was comprised

of the deposits from the Mississippi Embayment.

With the transgressive and regressive shoreline movement and decrease in terrigenous classic

supply, the Jackson Group mudstones and claystones alternate with carbonate deposits in an

offshore-nearshore environment. The Jackson Sea was the last maximum extent of sea level across

the Mississippi Embayment and resulted in much of the Jackson Group deposition in a marine a

nearshore origin (Sun, 1950).

The Moodys Branch Formation is the basal part of the Jackson Group and consists of fossiliferous,

glauconitic sands, calcareous clays, and some limestones (Dockery, 1977). Multiple Eocene-aged

fossils specific to these deposition cycles are found within the Moodys Branch. Overlying these

units is the Yazoo Clay Formation. The Yazoo Clay is primarily argillaceous, with thin sand lenses,

that are not regionally extensive. The clays have been described as fossiliferous and highly

calcareous.

2.1.2.10 Vicksburg Group

The Vicksburg Formation lies within the Tertiary depositional wedge of the Texas Gulf Coastal

Plain. Alluvial sands were funneled through broad valleys and grade seaward into deltaic sands

and shales and then into prodelta silts and clays. These sediments were deposited during periods

of marine transgression, separated by thicker sections deposited during period of regression in the

early Oligocene. The shoreline advanced and retreated in response to both changes in the rates of

subsidence and sediment supply. Rapid down dip thickening occurs along the syndepositional

Project Information Tracking for St. Helena Parish Site Class VI Permit Number: R06-LA-0001

Page 38 of 168

Revision Date: February 2023

Module A – Project Information Tracking

Vicksburg Flexure fault zone, where there may be as much as a ten-fold increase in formation

thickness.

The contact between the Eocene-age Jackson Group and the Oligocene-aged Vicksburg group is

almost indistinguishable in parts of the Gulf Coast. The lower part of the Vicksburg is marine and

the lithology changes between the two groups are based upon paleontological breaks, which are

not seen on logs. Therefore, the Jackson-Vicksburg Group is combined as a larger "megagroup"

for discussion. The Jackson-Vicksburg is mapped across the Gulf Coast region (Figure 2-20)

showing that the unit outcrops almost parallel with the current Gulf of Mexico coastline as shown

by Hosman, 1996.

2.1.2.11 Frio Formation

The Middle Oligocene Frio Formation is a thick sequence of mainly regressive sediments that were

deposited rapidly in alluvial, lagoonal, marginal marine and deep marine environments, forming a

major progradational wedge along the Gulf. Frio thickness and depth increases southwards, with

localized variations occurring around salt diapirs and major faults. Non-marine sands were

deposited in constantly shifting deltas and are interbedded with marine shales that were deposited

during periods of local transgression.

On a regional scale, the Frio Formation and Catahoula Formation (updip equivalent) can be divided

into a number of distinct depositional systems that are related spatially and in time. Four major

progradational delta complexes, designated the Central Mississippi, Houston, Norias, and Norma

delta systems, identified by Galloway et al., (1982b), were centered in the central and western

portions of the Gulf of Mexico (Figure 2-21). Three fluvial systems, the ancestral Mississippi,

Chita/Corrigan, and the Gueydan supplied sediment to the delta complexes. These four dispersion

axes supplied thick shore-zone sands on the underlying muddy Vicksburg shelf (Galloway et al.,

2000). In areas between major delta systems, shoreface and shallow marine environments

deposited broad sandstone units interbedded with marine silts/shales during transgressive periods.

Deposition of the progradational Frio wedge was initiated by a major global fall in sea level, with

subsequent Frio sediments being deposited under the influence of a slowly rising sea (Galloway et

al., 1982b). Shoreline conditions remained fairly constant during Frio deposition. This, coupled

Page 39 of 168

Page 40 of 168

Revision Date: February 2023

Module A – Project Information Tracking

with aggregational processes, developed a thick, narrow, homogenous sand section (Galloway et

al., 1982b). Strike-parallel growth faults accentuated the coast-parallel geometry of the

Greta/Carancahua barrier island/strandplain system. A similar but smaller barrier strandplain

system (Buna) developed by longshore currents off the eastern flank of the Houston delta system

in east Texas/ southwest Louisiana (Galloway et al., 1982b).

In southeast Texas and southwest Louisiana, a transgressive, deep-water shale and sandstone unit

referred to as the "Hackberry" occurs in the middle part of the Frio Formation (Bornhauser, 1960;

Paine, 1968). In some places, the Frio is regionally overlain by the Anahuac Formation, an

onlapping, transgressive marine shale that occurs in the subsurface of Texas, portions of southern

Louisiana, and southwestern Mississippi (Galloway et al., 1982).

Within Louisiana, the Frio Formation transitions into fine-grained, mix-load dominated fluvial

sediments updip, north of Beauregard Parish, ultimately pinching out in central Louisiana. To the

south (offshore Gulf of Mexico) the downdip limit of the Frio is defined by large-scale fault-related

juxtaposition against thick, fine-grained formations in the overlying Neogene (Swanson et al.,

2013). East of the paleo-Mississippi delta, the eastern Gulf of Mexico was the site of minimal

clastic influx during the Oligocene Frio time, and Frio siliciclastics grade both easterly and

southerly into the time equivalent carbonates of the Heterostegina or Amphistegina shelf (Krutak

and Beron, 1993; Galloway et al, 2000). Local structural highs are the result of salt diapirism and

associated faulting, in combination with the regional structural fabric of major faults dipping

dominantly southwards, parallel with the Gulf coastline.

To the west, a regional uplift in Mexico and explosive volcanism in southwestern United States

sourced siliciclastics, volcaniclastics, and volcanic ash into the west and central Gulf of Mexico

(Galloway et al., 2000). In the early Oligocene, when sea level was rising, the Frio sedimentation

rate was at its highest (55,000 km3/Ma). In the late Oligocene, sedimentation rates declined as a

result of the sea level increase and transgressive Anahuac Shale deposition (Galloway et al., 2011).

Updip from the Oligocene Frio Formation, the time-equivalent Catahoula Formation accumulated

on the progradational continental platform inherited from Yegua, Jackson, and Vicksburg

deposition (Galloway et al., 1982b). Sandstone composition in the Catahoula Formation reflects

Project Information Tracking for St. Helena Parish Site

Class VI Permit Number: R06-LA-0001

the nature of transport of volcanic debris and distance from the volcanic source. East Texas/West Louisiana samples have heavy mineral assemblages containing ultra-stable, polycyclic, metamorphic, and igneous minerals such as rounded zircon, sphene, tourmaline, staurolite, kyanite, apatite, rutile, sillimanite, and garnet (Ledger et al. 1984). South Texas samples contain abundant hornblende, zircon, apatite, and biotite (Ledger et al., 1984). The Trans-Pecos volcanic area is the probable source for the volcaniclastic material found in the Catahoula Formation (Ledger et al., 1984). In southeastern-central Louisianan, the Catahoula Formation is characterized by gray and greenish-gray silty clays, and unconsolidated to indurated, fine- to coarse-grained alluvial sands. Farther basinward, a few limestone and marl beds are present (Rainwater, 1964b).

2.1.2.12 Anahuac Formation

As sea level continued to rise during the late Oligocene, the underlying Frio progradational platform flooded. Wave reworking of sediment along the encroaching shoreline produced thick, time transgressive blanket sands at the top of the Frio Formation and base of the Anahuac Formation (Marg-Frio) section (Galloway et al., 2000; Galloway et al., 2011). The transgressive Anahuac marine shale deposited conformably on top of the blanket sands throughout the Texas and Louisiana coastal region. The Anahuac shale has regional extent, thickening from its inshore margin to nearly 2,000 feet offshore in the Gulf of Mexico (Swanson et al., 2013). The Anahuac shale was deposited in an inner-shelf, shallow marine, proximal deltaic, distal deltaic, and slope environments (Swanson et al., 2013). In western and central parts of Louisiana, the formation mostly comprises shales with lesser sandstones. Limestones and calcareous clastics dominate in eastern Louisiana and the eastern Gulf of Mexico, where clastic influx was minimal (Swanson et al., 2013).

2.1.2.13 Miocene-aged Formations

The Miocene strata of the Gulf Coastal Plain contain more transgressive-regressive cycles than any other epoch. Rainwater (1964) has interpreted the Middle Miocene as a major delta-forming interval comparable to the present-day Mississippi Delta system. The Miocene sediments of the Fleming Group of Louisiana are equivalent to the Oakville and Lagarto Formations of Texas, and to the Catahoula, Hattiesburg, and Pascagoula Formations of Mississippi. Deposition of the

Revision Date: February 2023

Module A – Project Information Tracking

Fleming Group occurred in relatively shallow water across a broad, submerged, shelf platform

constructed during Frio and Anahuac deposition. Three major depositional regimes characterize

the Fleming Group. Figure 2-22 (Ewing and Galloway, 2019) presents the distribution of the lower

Miocene depositional systems across the Gulf Coastal Plain.

Along the northeastern boundary of Texas, the Newton Fluvial system (also includes the

Red/Rockdale River) supplied sediment to the Calcasieu delta system of Southeast Texas and

Southwest Louisiana. Sands of the Newton fluvial system are fine to medium-grained, with thick,

vertically, and laterally amalgamated sand lithosome geometries typical of meander belt fluvial

systems (Galloway, 1989). Depositional patterns within the Oakville Formation (lower Fleming)

of Southeast Texas show facies assemblages typical of a delta-fringing strand plain system

(Galloway, 1989). The Calcasieu delta system is best developed in Southeast Texas in the Lagarto

Formation of the upper Fleming. The Mississippi Delta system is supplied sediment from the

Mississippi delta and is comprised of undifferentiated sands that comprise the Fleming Group.

These delta systems consist of stacked delta-front, coastal-barrier, and interbedded delta

destructional shoreline sandstones that compose the main body of the delta system, with

interbedded prodelta mudstones and progradational sandy sequences deposited along the distal

margin of the delta (Galloway, 1989).

The Middle Miocene represents much of the entire Miocene interval, with only the site of

deposition changing in response to various transgressions and regressions. The result is a complex

of interbedded shallow neritic clays; restricted marine clays, silts, and sands; and deltaic deposits

of sands, silts, and clays. If a composite were made of the thickest Miocene intervals around the

Gulf Basin, more than 40,000 feet of accumulated sediment would be obtained, of which about

20,000 feet were deposited in southern Louisiana (Rainwater, 1964).

Per Hosman, 1996, the complexity and heterogeneity of the myriad of facies making up Miocene

strata preclude development of continuous horizons and have frustrated attempts at regional

differentiation. Figure 2-23 shows that the Miocene Formation exists north of the St. Helena Parish

location and extends to depths below 8,000 feet along the southeastern portion of Louisiana.

Operators in the southern portion of Louisiana have historically used terminology for the sands

based upon their depth interval location at their sites (i.e., sand packages at 6,400 feet are termed

Project Information Tracking for St. Helena Parish Site Class VI Permit Number: R06-LA-0001

Page 42 of 168

Revision Date: February 2023 Module A – Project Information Tracking

"6,400-Foot Sand"). Therefore, the Fleming Formation has sub-divisions of members based on the

geographical locations within the Gulf of Mexico.

The Fleming Group is also differentiated into members that vary across central Louisiana to

Mississippi. In central Louisiana to the Texas border, the Miocene Formation is present as a

shallow aquifer-aquitard system, subdivided in ascending order:

• Lena Member – Confining Unit

• Carnahan Bayou Member – Aquifer

• Dough Hills Member – Confining Unit

• Williamson Member – Aquifer

• Castor Creek Member – Confining Unit

• Blounts Creek - Aquifer

However, in Mississippi, the Fleming Group, is subdivided in ascending order:

• Catahoula Formation

• Hattiesburg Formation

Pascagoula Formation

Terrigenous clastics of the Miocene section were derived from the Eocene and Cretaceous terrane

of the Mississippi Embayment as well as from the Appalachian terrane (Rainwater, 1964b). The

Catahoula Formation is characterized by gray and greenish-gray silty clays and unconsolidated to

indurated, fine- to coarse-grained alluvial sands. Farther basinward, a few limestone and marl beds

are present (Rainwater, 1964b). The formation at outcrop is approximately 300 feet thick and

thickens into the subsurface to approximately 1,000 feet thick near the Louisiana-Mississippi

border. Most of the Miocene sediments of southern Mississippi are referred to as the Hattiesburg

and Pascagoula formations. The marine shoreline was located south of the present day Mississippi

shoreline during most of the Miocene, although at least two major marine transgressions are

recorded in the late Miocene section (Rainwater, 1964b).

Project Information Tracking for St. Helena Parish Site Class VI Permit Number: R06-LA-0001

Page 43 of 168

Revision Date: February 2023 Module A – Project Information Tracking

Wodale 71 Troject Information Tracks

2.1.2.14 Pliocene-aged Formations

Pliocene aged formations in Louisiana, although separated into upper and lower units, are mostly

undifferentiated and unnamed. Much of the Pliocene and younger sediments were deposited

offshore of the present coastline. Nearer to shore, sediments were deposited under predominantly

fluvial-deltaic conditions and exist as a complex of channel sands, splays, and overbank flood plain

marsh deposits. Further south along the coast in southern Plaquemines Parish, the Pliocene section

is approximately 6,000 feet thick (Everett et al., 1986). See Figure 2-24 for regional extent and

thickness of the Pliocene Formation.

At the project site, the Pliocene-aged Formation is comprised of the Citronelle and terrace deposits

Formations (Figure 2-25) and discomformably overlies the Miocene-aged Fleming Group. The

Citronelle Formation was deposited on broad coalescing flood plains that occupied a wide belt

between the Mississippi River and the Atlantic coast. Heavy mineral spectra of the unit indicate

an Appalachian metamorphic belt source area.

The Citronelle Formation ranges in thickness from a thin veneer to a maximum of 160 feet (Brown

et al., 1944). The most common feature of the Citronelle Formation is the strongly oxidized brick-

red sands that form ridge crests at the surface (Brown et al., 1944). Road cuts through the Citronelle

Formation exhibit large-scale fluvial cross-beds in the coarse sands and gravels. Citronelle

sediments are interpreted to be erosional remnants of distributary channel deposits (Brown et al.,

1944).

2.1.2.15 Pleistocene and Holocene Formations

Pleistocene sediments were deposited during a period of fluctuating sea level and represent a

fluvial sequence of post-glacial erosion and deposition. The formations were deposited in both

fluvial and deltaic environments, and they thicken in a southeastward dip direction as well as

southwest along strike toward the southwest. Pleistocene sediments thicken along the Texas

Louisiana border and in a dip direction where there was significant deposition along growth faults

during Pleistocene sea level lowstands (Aronow and Wesselman, 1971). Thickest portions of the

formation are along and towards the Gulf of Mexico. These sediments are relatively shallow

Project Information Tracking for St. Helena Parish Site Class VI Permit Number: R06-LA-0001

Page 44 of 168

Revision Number: 1
Revision Date: February 2023
Module A – Project Information Tracking

(approximately 2,000 feet deep) and up to 5,000 feet thick. Pleistocene sediments grade conformably into the overlying Holocene depositional units.

With the retreat of the Pleistocene glaciers, sea level began a final irregular rise to its present-day level. Holocene sediments were deposited following the final retreat of glacial ice. The slow rise of the Holocene sea level marked the beginning of the recent geologic processes that have created the present-day Texas and Louisiana coastal zone. During recent times, sediment compaction, slow basin subsidence, and minor glacial fluctuations have resulted in insignificant, relative sea level changes. The coastal zone in Louisiana has evolved to its present condition through the continuing processes of erosion, deposition, compaction, and subsidence periods. The Holocene sediments in central Louisiana unconformably overlie the Miocene-aged Fleming Formation, representing a long period of time of non-deposition and erosion. The Holocene formations in the area are deposited in terrace and coastal deposits, loess, and Mississippi River Valley alluvium. The river valley meander belts are primarily composed of point bar sandstones, with interbedded finergrained overbank deposits and alluvium deposits. At the project site, Holocene deposits unconformably overlie the Pliocene-aged deposits, and is represented as a thin layer of Alluvium at the surface,

2.1.3 Regional Structural Geology

The interaction between sediment accumulation and gravity has played a major part in contemporaneous and post-depositional deformation of Tertiary strata. However, the continental margins and deep ocean basin regions of the Gulf of Mexico, are relatively stable areas (Foote et al., 1984). During the Late Triassic to Early Jurassic, large volumes of eroded material were deposited on areas of regional subsidence. The sediments of the Gulf Coast generally possess a homoclinal dip (southward) toward the Gulf of Mexico (Murray, 1957). The Central Gulf Coast can be divided into regions or provinces in which the regional dip has been modified. Positive regions in the area include the Sabine and Monroe uplifts, the Wiggins, San Marcos, and La Salle arches, and Jackson Dome (Figure 2-6). Structurally negative regions in the area include the North Louisiana Basin, the Houston Embayment, the East Texas Embayment (including the Tyler Basin), and various salt basins. The LaSalle Arch (northwest of site) and Wiggins Uplift (southeast of site) are two regional uplifts that created a broad low relief syncline/embayment that was present at

Revision Number: 1 Revision Date: February 2023

Module A – Project Information Tracking

least through Oligocene time.

The LaSalle Arch divides the Mississippi and Lousiana Salt Basins. It is rooted within a basement

high, a relict Paleozoic continental crustal block (Lawless & Hart, 1990). It is supported by

basement paleo-highs with the eastern limb of the arch formed by regional tilting to the east and

the western limb formed from differential subsidence to the southwest. (Lawless & Hart, 1990).

The southern most exent of this feature is approximately 80 miles northwest of the St. Helena

Parish site. The western limb developed syndepositionally due to differential subsidence and the

eastern limb developed due the relative regional tilting to the east after deposition of the Claiborne

Sparta Formation (Lawless & Hart, 1990). The central and southern regions of the arch have been

hydrocarbon productive, primarily from Wilcox sands.

The St. Helena Parish site is geologically located northwest of the Wiggins Arch. The Wiggins

Arch is a major east-west basement uplift that formed during Mesozoic Age. The area is

structurally stable and relatively unfaulted with a regional dip towards the south-southwest. The

Late Cretaceous clastic section and major Tertiary progradational wedges were less affected by

growth faulting than the equivalent downdip expanded sedimentary sections located offshore

beyond the Cretaceous shelf edge. The structural style of the lower coastal section of Louisiana is

characterized by salt diapirism with its associated faulting and salt withdrawal basins (Galloway

et al., 1982). The impact of diapirism on sedimentation is varied. If an area becomes a positive

feature during a depositional period, the sedimentary section will be thinner above the diapiric

structure. Conversely, the area from which the salt (or shale) has withdrawn will accumulate a

greater thickness of sediment. Examples of such conditions are the rim-synclines adjacent to

diapirs and, on a larger scale, salt-withdrawal sub-basins. However, this mechanism does not have

an impact on the local structural geology of the injection site.

In Louisiana, there are bands of growth faults in addition to the salt domes. These fault zones

include the Mamou, Tepetate-Baton Rouge, Lake Arthur, and Grand Chenier Fault zones. The

closest fault zone to the project area is the Baton Rouge Fault system, which is a major regional

tectonic feature that marks the Cretaceous shelf margin. This fault system strikes east west and

trends along the north edge of Lake Pontchartrain, Louisiana, eastward through the Chandeleur

Sound into the Gulf of Mexico (Figure 2-26).

Project Information Tracking for St. Helena Parish Site

Class VI Permit Number: R06-LA-0001

Page 46 of 168

2.1.4 Regional Groundwater Flow in the Injection Zones

Regional groundwater flow is fairly well documented in aquifers from the Holocene to mid-Miocene, but reliable data for deeper aquifers have not generally been available to date. Many of the studies for flow rates in deep saline aquifers come from the search for nuclear waste disposal sites. These studies show sluggish circulation to nearly static conditions in the deep subsurface (Clark, 1988). Studies in other areas, such as for the Mt. Simon Formation by Nealon (1982) and Clifford (1973), and the Frio Formation on the Texas Gulf Coast by Kreitler et al. (1988), have been used to demonstrate regional flow rates in the subsurface. Additional studies of Class I injection along the Gulf Coast have also provided insight movement in the subsurface.

A southern (downdip) direction of regional flow established for geologic formations in the Gulf Coast area is consistent with the theory of deep basin flows and the physical mechanisms (topographic relief near outcrops and deep basin compaction) identified as contributing to natural formation drift (Bethke et al, 1988; Clark, 1988; Kreitler, 1986). General flow of groundwater, as indicated by Kreitler et al. (1988), has been locally modified by the production of oil and gas. The bulk of the historical hydrocarbon production in St. Helena Parish is largely from the Lower Tuscaloosa reservoir where there are commercial hydrocarbon accumulations. Lateral facies changes, which can result in localized sand pinch-outs, are known to occur in the direction recharge areas (updip), therefore, background hydraulic gradients in the targeted injection zones may be highly restricted.

There are conservative estimates of background horizontal hydraulic gradients for Miocene-aged sediments which can be made from previous studies and applied to the injection formations for the St. Helena Parish site. Data published by Clifford (1973 and 1975), Slaughter (1981), and Bently (1983) provide estimated natural hydraulic gradients from three aquifers that are approximately 3,000 feet deep. The natural horizontal hydraulic gradient in these Miocene-aged aquifers ranged from 0.021 feet/yr. to 1.58 feet/yr., averaging 0.70 feet/yr. For deeper formations, such as the underlying Frio aquifers in the Texas Gulf Coast, within the depth range of approximately 6,000 feet below ground, the natural hydraulic horizontal gradient is estimated to be much smaller and, as indicated by Kreitler et al. (1988). Clark (1988) found similar sluggish-slow circulation in the

Frio Formation in the Houston area, with groundwater velocities expected to be inches to a few feet in scale.

Original formation pressure gradient data for Class I wells completed in the Frio Formation in the east Houston area substantiates the lack of a large hydraulic gradient within these deeper sandstones in the regional Gulf of Mexico. Original formation pressure gradients for the Frio Formation from the Sasol Plant Well No. 1 (WDW147), from the Lyondell Chemical Company, Plant Well 1 (WDW148) located approximately 33,000 feet northeast of WDW147, and from the Equistar Plant Well 1 (WDW036), located approximately 49,500 feet north-northwest of WDW147, are nearly identical (+0.001 psi/feet). Therefore, based on this information, estimates for the natural background reservoir velocity in Frio Injection Zone in the regional Gulf Coast are placed at inches to feet per year and in a downdip direction.

The actual value for the natural hydraulic horizontal gradients in the Injection Zone units of the St. Helena site are expected to be less than 1.0 feet/yr. Where local salt dome features are present, flow due to dissolution of salt domes is expected to be on the order of a few centimeters per year, or substantially less than 1.0 feet/yr., at distances greater than one mile from the source of dissolution according to Miller (1989). Therefore, the estimate of 1.0 feet/yr. in the easterly (downdip) direction for the natural hydraulic gradient near the proposed sequestration site is a conservative estimate for all injection zones.

2.2 LOCAL GEOLOGY OF THE SHELL ST. HELENA PARISH SITE

2-27). The following sections detail the geology on a locally affected scale, specific to the area for the Shell sequestration project.

2.2.1 Data Sets Used for Site Evaluation

Multiple sets of data were used to evaluate and characterize the geology for the project sequestration site. Various forms of input data were available (publicly, commercially, and internal to Shell) for generating the integrated subsurface description of the Shell St. Helena Parish site.

2.2.1.1 Offset Well Logs

Over 2,000 wells were examined within a larger regional area including the Shell St. Helena Parish site and surrounding parishes. The larger selection of data was used to build a large structural model to incorporate details of the project at local, semi-local, parish, and regional scales. These wells used for analysis were drilled between 1928 and 2020 and have logs of varying quality and format. Many of the wells in the study area have publicly available raster image logs, while fewer contain commercially available digital data. Out of the 2,000 wells examined, 653 wells contained a digital spontaneous potential (SP) or gamma ray (GR) curve and 131 wells had digital density or delta-t (DEN or DT) curves. Of those with digital data, a subset was suitable for petrophysical evaluation and was subsequently used in the construction of the static models. Wells with digital SP logs are the primary well set used for geological structural interpretation. These wells were also used to provide information on the lateral extent and continuity of the confining and injection zones. Well logs for the project come from Louisiana Department of Natural Resources' (LDNR) Strategic Online Natural Resources Information System (SONRIS) and publicly available commercial log libraries that contain Gulf Coast data.

Published data for the formations of interest are cited in Section 2.1.2 and are listed alphabetically in Section 14.0. These include the American Association of Petroleum Geologists, Gulf Coast Association of Geological Societies, United States Geological Survey, and state agencies.

2.2.1.2 Seismic Data

Seismic data was used in order to confirm general structural attitudes in the area and evaluate potential faulting in the area. There are forty-six proprietary licensed two-dimensional (2D) seismic lines over a regional area of interest. Of those forty-six 2D seismic lines, only twenty-six have sufficient quality for meaningful interpretation. No three-dimensional (3D) seismic data is

Revision Date: February 2023

Module A – Project Information Tracking

available in the area. All of the 2D seismic lines available for licensing are currently owned and

licensed by commercial vendors and are held business confidential. The available 2D seismic data

that crosses the project area is of sufficient quality to be utilized in a seismic interpretation (Figure

2-28).

Time-depth conversion was based on updated checkshot from well to seismic match at the

using a consistent datum

at a Frio reflector. Seismic resolution is approximately 40 feet at the Frio formation and 50 feet at

the Lower Tuscaloosa, assuming a dominant frequency of 20 Hz and velocity varying from 3,000

to 4,000 m/s. The seismic data was used for fault identification and to condition the structural

surfaces between well control.

Seismic data was interpreted from the twenty-six 2D seismic lines and assisted in the construction

of top of structure depth maps. As the seismic quality is better in the northern portion of the study

area, the northern portion has better control. The uncertainty at deeper reservoirs, Wilcox and

Lower Tuscaloosa, is larger than at the shallow Frio reservoir, due to minor seismic alignment

issues. All of the 2D seismic data are aligned at the Frio reservoir to correct datum issues.

Two-dimensional (2D) lines were interpreted with the intent to further understand the structural

framework, mainly:

• Calibration of structural control and structural depth trends

• How far the faults cut up towards the surface

• The lateral extent and throw of major faults

• The time-depth relationship to locate and map the key reservoirs and seals

• Calibration as to which units are juxtaposed across the faults for understanding reservoir

plumbing and potential risks to containment

2.2.1.3 Stratigraphic Test Well

Shell plans to drill two Class V Stratigraphic Test Wells in the 4th quarter of 2022 and the 1st

quarter of 2023 to appraise the storage complex. These appraisal wells have been designed to meet

Project Information Tracking for St. Helena Parish Site

Page 50 of 168

Revision Date: February 2023

Module A – Project Information Tracking

Class VI injection construction and testing standards. These wells will be drilled and tested in

accordance with the "Pre-Operational Testing and Logging Plan" submitted in Module D. The

data collected will include a vast suite of logs, whole and rotary core, and formation testing to

provide site-specific details that will pertain to the Shell St. Helena Parish site. Data will be

collected at future dates and used to reduce uncertainties and support assumptions made in the

initial permit application.

2.2.2 Local Stratigraphy

The injection and confinement system present beneath the St. Helena Parish site is composed of

sediments that range in age from Late Cretaceous to Holocene (Figure 2-1). The local stratigraphy

is established on a type log (Figure 2-2) and used as a basis for correlating with the offset well

data. Using this type log, the following local stratigraphic formations were evaluated for potential

viability for a sequestration complex:

Tuscaloosa Group

• Eagle Ford Formation (Eutaw Equivalent in Mississippi)

• Austin Chalk (Selma Chalk Equivalent in Mississippi)

• Midway Shale

• Wilcox Formation

Claiborne Group

• Frio Formation

Anahuac Formation

• Miocene Formation

Holocene Formation

At the St. Helena Parish location, there are three proposed injection zones: Frio, Wilcox, and

Lower Tuscaloosa Formations. These injection zones are confined by the overlying Frio Confining

Zone. This zone is comprised of the Upper Oligocene Anahuac Formation, which records a

significant transgression across the Oligocene Gulf Coast and the shales of the Lower Miocene

Formation. There has been no production or injection into the Frio Formation in the area

Project Information Tracking for St. Helena Parish Site Class VI Permit Number: R06-LA-0001

Page 51 of 168

Revision Date: February 2023

Module A – Project Information Tracking

surrounding the sequestration site. Note: Regional publications may have equivalents of

formations in the near area and are identified above with the nomenclature.

In the Shell project area, these three primary reservoir injection intervals are identified as the

"storage complex" zone. Each zone has an overlying containment interval, but the storage

complex, as a whole, is capped by a Miocene/Oligocene aged "Primary" Confining Zone.

The following discussion defines and briefly describes the formations of interest that underlie the

surface in the project area, beginning with the Miocene/Oligocene aged combination for the Frio

Confining Zone and ending with the Lower Tuscaloosa Injection Zone, the deepest targeted

injection zone. Gross isopach maps have been developed for the local area for each of the proposed

regulatory zones. All maps referenced in this discussion are contained in Appendix A – Local

Geologic Maps (see Table 2-1).

Shales of the Lower Miocene and the Oligocene Anahuac Formation (including Heterostegina

Lime) collectively are called the Frio Confining Zone (above the Frio Formation), and this is

considered the "Primary" Confining Zone for the St. Helena Parish site. The Anahuac lithologies

in eastern Louisiana contain abundant carbonate that grades to the west into clastic shales

(Swanson, S. and Karlsen, A. 2009). The Frio Confining Zone thickens from approximately 200

feet to 550 feet from northeast to southwest across the site area (Figure A.1). The Frio Confining

Zone is characterized by abundant high resistivity high density streaks and lithologies, which are

calcareous shales with occasional carbonate beds and/or calcite cemented sandstones, and minor

discontinuous silty sands, interpreted from the wireline logs.

The Middle Oligocene Frio Formation is a thick sequence of deltaic, coastal, and marine deposits

across the project area. Sediment was predominantly sourced from the paleo-Mississippi delta

system and the axis of deposition shifted toward the west through the end of the Oligocene (Figure

2-21). East of the paleo-Mississippi delta in Louisiana, the Frio is characterized by minimal clastic

influx, with siliciclastics grading both easterly and southerly into the time equivalent carbonates

of the Heterostegina or Amphistegina shelfs (Krutak, P.R. and Beron, P., 1993; Galloway et. al.,

2000). Ultimately, the Frio is capped by the Upper Oligocene Anahuac Formation, which records

a significant transgression across the Oligocene Gulf Coast. As with the Frio Formation, the

Project Information Tracking for St. Helena Parish Site

Class VI Permit Number: R06-LA-0001

Page 52 of 168

Revision Date: February 2023

Module A – Project Information Tracking

Anahuac lithologies in eastern Louisiana contain abundant carbonates that grade to the west into

clastic shales (Swanson, S. and Karlsen, A. 2009).

The updip extent of the Oligocene sedimentary wedge occurs approximately 100 miles north of

the project area in Mississippi, where the Miocene is observed to directly overlay the Eocene

Jackson group in outcrop (Swanson, S. and Karlsen, A., 2009). The Frio gross thickness increases

slightly downdip from approximately 1,300 feet in the northeast to 1,400 feet in the southwest

(Figure A.2).

The Paleocene-aged Wilcox Group is a thick clastic succession that flanks the margin of the Gulf

Coast Basin. This geologic group contains fluvial and deltaic channel-fill sand bodies distributed

in a matrix of lower permeability inter-channel sands, silts, clays, and lignites. Most of the sands

are distributed in a dendritic pattern, indicating a predominately fluvial depositional environment

(Fogg et al., 1983).

The Wilcox Group is divided into the Lower, Middle, and Upper intervals. The semi-regional

Yoakum Shale divides the Upper and Middle Wilcox, and the Big Shale Marker, which separates

the Middle and Lower Wilcox. During Wilcox Group deposition, the Laramide Orogeny displaced

the Paleocene shelf eastward from the relict Lower Cretaceous reef and formed Laramide uplands

which sourced the majority of sediment (Galloway et al., 2000; Galloway et al., 2011). The East

Texas Basin ceased to be a marine basin during the Tertiary and Quaternary Periods when major

Eocene, Oligocene, Pliocene, and Pleistocene depocenters shifted toward the Gulf of Mexico. The

Wilcox gross thickness is approximately 4,000 feet across the Shell St. Helena Parish site (Figure

A.3)

The Late Cretaceous Lower Tuscaloosa formation at St. Helena Parish site unconformably overlies

the Early to Middle Cretaceous deposits of the dominantly carbonate Washita and Fredericksburg

groups (Mancini E. A. et al., 1987) (Woolf, 2012). Known as the 'mid-Cenomanian unconformity'

or the 'mid-Cretaceous sequence boundary,' this unconformity likely reflects a concurrent tectonic

uplift and sea level fall that resulted in significant downcutting and incision into

Washita/Fredericksburg group during the mid-Cenomanian time. At the regional scale, the

Tuscaloosa formation deposits are sourced by the paleo-Ouachita and Appalachian Mountains to

Project Information Tracking for St. Helena Parish Site

Class VI Permit Number: R06-LA-0001

Page 53 of 168

Module A – Project Information Tracking

the north and northeast. The Tuscaloosa Formation above the basal unconformity is divided into Lower, Middle and Upper Tuscaloosa in Mississippi and Alabama. The Lower Tuscaloosa is then divided into three units, called 'Massive, Stringer, and Pilot sands' in Mississippi and Alabama. However, the 'Stringer sand' of the Lower Tuscaloosa and the Upper Tuscaloosa both thin to the south and west and are not present in the project area in Louisiana. The Lower Tuscaloosa and Tuscaloosa Marine Shale are conformably overlain by the Eagle Ford Shale in the local area (Woolf, 2012).

The Lower Tuscaloosa 'Massive' sand in the Shell project area is interpreted as compound, incised valley fill deposits comprised of aggrading to backstepping fluvial (braided and meandering river) and estuarine facies resulting from sea level rise following mid-Cenomanian incision. Major existing structural features influenced the subsequent fluid flow and sediment deposition, including the western and eastern Wiggins arches and the Cretaceous shelf edge in the regional proximal to the Shell prospect site (Stephens, 2009), (Woolf, 2012).

The early fluvial deposits grade downdip (southwest) of the Shell St. Helena Parish site into associated unconfined, valley-mouth deltaic deposits which are later reworked during continued marine transgression. This section is highly expanded south of the Shell project site in association with large growth faults near the paleo-Cretaceous shelf edge. As marine transgression continued, the massive sand is overlain by low overall net to gross 'backstepping' deposits of nearshore marine and marine bar complexes, which are finally overlain by the fully marine capping sediments of the Tuscaloosa Marine shale and the Eagle Ford. The gross thickness (True Vertical Thickness (TVT)) of the Lower Tuscaloosa Injection Zone at the local site ranges from approximately 200 feet in the central injection area to greater than 400 feet south downdip to the southwest as the section expands near the paleo-shelf (Figure A.4). The thick Eagle Ford/Tuscaloosa Marine Shale section (approximately 1,200 feet TVT) can be correlated across the St. Helena Parish site between the base of the Austin Chalk and the top of the Lower Tuscaloosa Injection Zone. A maximum flooding surface mapped inside this interval, entitled the 'High Resistivity Zone' (Rouse et al., 2018). The top of the 'High Resistivity Zone' within the Tuscaloosa Marine Shale records the maximum seal level rise and drowning of the incised valleys (Woolf, 2012) (Ambrose, 2015) (Shell internal research). The gross thickness of the 'High Resistivity

Revision Date: February 2023

Module A – Project Information Tracking

Zone' ranges from 75 feet to 125 feet in the Shell St. Helena Parish project area. This 'High

Resistivity Zone' serves as the Confining Zone for the Lower Tuscaloosa Injection Zone.

The top of the 'High Resistivity Zone' within the Tuscaloosa Marine shale records the maximum

seal level rise and drowning of the incised valleys (Woolf, 2012) (Ambrose, 2015) (Shell internal

research). This marine shale serves as the local confining zone for the Lower Tuscaloosa reservoir.

2.2.3 Local Structure and Faulting

The Shell St. Helena Parish site is located in a structurally quiescent area updip of the paleo-

Cretaceous shelf margin (Figure 2-29). The Cretaceous shelf margin exhibited control on

structures and depositional architecture through much of the Cenozoic, with relatively low dips

and structural complexity north of the shelf margin and increasing complexity and structural dips

to south. The Shell St. Helena Parish site exhibits low dips (1-1.5 degrees) and minimal faulting

only clearly observed in the deepest stratigraphic level of the Lower Tuscaloosa.). Downdip of the

project site and the paleo-Cretaceous shelf margin, sediment loading from large paleo-delta

systems caused into-the-basin growth faulting and local structuration associated with salt

withdrawal (Salvador, 1991; Galloway et al., 2000). Top of Structure maps have been developed

for the local area for each of the proposed regulatory zones. All maps and cross sections referenced

in this discussion are contained in Appendix A – Local Geologic Maps (see Table 2-1).

As presented by the structure and isopach maps prepared for the Shell St. Helena Parish site [40]

CFR 146.82(a)(3)(ii)], there is no evidence of faults or subsurface structures in the delineated AoR

(Figures A.5, A.6, A.7, A.8). Low throw, minor fault surfaces were interpretable from available

2D seismic and supported by available field-scale maps of the Lower Tuscaloosa in the public

domain (Yuma Energy, 2014) outside the AoR (Figure A.8). These faults were included in the

greater site evaluation and computational modeling (as discussed in Module B). The fault(s)

interpretation has a high degree of uncertainty with respect to continuity and amount of throw at

the Lower Tuscaloosa level. The vertical resolution of the 2D seismic data is approximately 50

feet at the Lower Tuscaloosa level and the fault offset is near 50 feet, therefore making the faults

difficult to interpret. The faults are likely expressed as a series of en echelon fault segments as

opposed to singular continuous fault planes (Yuma Energy, 2014).

Project Information Tracking for St. Helena Parish Site Class VI Permit Number: R06-LA-0001

Page 55 of 168

Revision Number: 1 Revision Date: February 2023 Module A – Project Information Tracking

Faults exhibit down to the SW offset (normal faults into the paleo-basin) and have approximately 50-70 feet of throw that decreases up section. Based on evaluation of shale content, fault offset, the fault-related shale-gauge ratio, and associated fault transmissibility the faults are not considered to be a dynamic barrier to flow or pressure dissipation, and at low risk to containment (discussed in Section 2.5 below and in **Module B**). The Confining and Injection Zones within the AoR for the St. Helena Parish site are all laterally continuous and free of transecting, transmissive faults or fractures (to be confirmed with collection and evaluation of site-specific appraisal data) as presented in two cross sections (Figure A.9 – along strike (W-E) and Figure A.10 along dip (N-S)). A thorough literature search, interpretation of the available site-specific seismic data, creation of structure and isopach maps using available well data, and dynamic evaluation (discussed in **Module B**) indicates that potential faulting in the larger project area would not compartmentalize the proposed Injection Zones (Frio, Wilcox, and Lower Tuscaloosa) or permit vertical movement of fluids into a USDW or freshwater aquifer.

This section contains the information on the confining and injection zones for the St. Helena Parish

sequestration site per the 40 CFR 146.82(a)(3)(iii) standard. Details pertaining to the formation

characteristics, lateral and vertical extent, and mineralogy are identified for each zone of interest.

Demonstration of security for injection includes a geologic containment demonstration and the

absence of vertically transmissive faults that could form breaches of the containment system.

A confining zone is defined as "a geologic formation, group of formations, or part of a formation

stratigraphically overlying the injection zone(s) that acts as barrier to fluid movement." For the

Shell St. Helena Parish site, the "Primary" confining zone is designated as the Frio Confining Zone

(comprised of the Heterostegina Limestone and Anahuac, as well as the correlative shale in the

Lower Miocene), located between -4,125 feet and -4,538 feet TVDSS (depths based upon the type

log presented in Figure 2-2). Furthermore, alternating saline sands and shale layers in the Miocene-

aged formation overlying the Frio Confining Zone will act as additional containment intervals and

barriers to vertical flow, providing an added measure of fluid confinement. Geophysical well logs

will be generated during the testing of the appraisal wells to provide site specific depths of the Frio

Confining Zone.

An injection zone is defined as "the geologic formation, group of formations, or part of a formation

that is of sufficient areal extent, thickness, porosity, and permeability to receive carbon dioxide

through a well or wells associated with a geologic sequestration project." Injection targets have

been usually identified as formations below a depth of 3,000 feet to ensure CO2 stays in the

supercritical phase. Three sequestration reservoirs have been identified (depths are based upon the

type log presented in Figure 2-2 and will be updated with site specific data acquired during the

testing of the appraisal wells). All depths are presented TVDSS.

1. Frio Formation: - 4,538 feet to - 6,116 feet;

2. Wilcox Formation: -7,443 feet to -11,583 feet; and

3. Lower Tuscaloosa Formation: -14,039 feet to -14,255 feet

Revision Date: February 2023

Module A – Project Information Tracking

All targeted geologic intervals have the necessary characteristics to be effective sequestration

reservoirs and are located more than 2,000 feet below the lowermost aquifer that meets the criteria

for being a USDW (less than 10,000 mg/l total dissolved solids content) at the Shell St. Helena

Parish site.

2.3.1 Confining Zones

Demonstration of security for injection includes a geologic containment demonstration and

evidence of the absence of vertically transmissive faults that could form breaches of the

containment system. In accordance with the EPA 40 CFR §148.21(b) the confining zone is a

laterally extensive layer that restricts the vertical flow of injectate due to sufficiently low porosity

and permeability.

At the Shell St. Helena Parish site, the identified the Primary Confining Zone is the Frio Confining

Zone. This confining zone is at a depth of approximately -4,500 feet TVDSS and is approximately

450 feet thick TVT across the AoR (Figure A.1 in Appendix A).

The deeper Wilcox and Lower Tuscaloosa injection reservoirs are overlain by thick, regionally

extensive shales that will act as internal secondary seals for containment and restrict vertical

migration out of an authorized permitted zone. As such, understanding shale characteristics in the

gulf coast is required.

As there is currently no site-specific data for the proposed confining zone, shale porosities via

published literature were reviewed as part of the seal efficiency assessment. These published shale

porosities were used to estimate permeabilities and entry pressures (via understanding textural

components such as pore throat size) in the proposed confining zone. Although log evaluation of

the shales may indicate high total porosity (as defined on the "Area of Review and Corrective"

Action Plan" submitted in Module B), a review of published literature was used to evaluate

effective porosities as an indicator of the clay bound volume.

Effective shale porosities developed for Gulf Coast shales are presented in Porter and Newsom

(1987) and shown on Table 2-2. These minimum effective shale porosities decrease as a function

of depth due to lithification and no local overpressures are assumed. The "effective" shale porosity,

Project Information Tracking for St. Helena Parish Site Class VI Permit Number: R06-LA-0001

Page 58 of 168

Revision Date: February 2023

Module A – Project Information Tracking

which discounts the bound water within the clay structure as well as water contained in dead-end

pores, represents an appropriate choice of a porosity value for such a calculation.

Using the Porter (1987) relationship for the minimum effective porosity in a shale versus depth,

the maximum porosity in the shales is expected to range between 11% for shales above the Frio

Injection Zone and 9% for shales below 7,000 feet. Effective porosities are expected to be less

than 11 percent below the Lower Tuscaloosa Injection Zone.

Site specific core data will be collected from the drilling of two appraisal wells for the site. Core

analysis will be used to determine mineral composition and petrophysical characteristics of the

sealing formations, as well as geomechanical properties such as ductility.

2.3.1.1 Primary Confining Zone – Frio Confining Zone

Shales of the Lower Miocene and the Oligocene Anahuac Formation (including Heterostegina

Lime), collectively called the Frio Confining Zone, are considered the Primary Confining Zone

for the St. Helena Parish site. The Anahuac lithologies in eastern Louisiana contain abundant

carbonate that grades to the west into clastic shales (Swanson, S. and Karlsen, A. 2009). There is

no available core, x-ray diffraction (XRD) or image information for the Frio Confining Zone in

publicly available data relevant to the St. Helena Parish site. From available log evaluation, the

Frio Confining Zone is characterized by abundant high resistivity, high density streaks that exhibit

fast sonic transit times (indicating low porosity/permeability). Lithologies interpreted from the

wireline logs are calcareous shales with occasional carbonate beds and/or calcite cemented

sandstones and minor silty or sandy sand stringers.

Additional site-specific data will be collected during the drilling of two appraisal wells. Core data

and analysis, along with a comprehensive suite of logging and formation testing has been

developed to collect data focused on the Confining Zone. This data will be updated into the site

characterization and modeling to reduce uncertainties based upon lack of site-specific data. The

wells will be constructed, tested, and logged in accordance with Class VI standards set forth by

the USEPA, for potential future conversion. Detailed information on the data acquisition is

contained in the "Pre-operational Testing and Logging Plan" contained in Module D.

Page 59 of 168

Module A – Project Information Tracking

2.3.2 Injection Zones

A carbon dioxide sequestration injection zone is defined as "the geologic formation, group of

formations, or part of a formation that is of sufficient areal extent, thickness, porosity, and

permeability to receive carbon dioxide through a well or wells associated with a Geologic

Sequestration project." Sandstones of the Frio, Wilcox, and Lower Tuscaloosa Formations contain

the necessary characteristics to be effective injection zones at the Shell St. Helena Parish site. The

Shell injection zones have been designated as follows:

• Injection Zone 1 – Frio Formation

• Injection Zone 2 – Wilcox Formation

• Injection Zone 3 – Lower Tuscaloosa Formation

All characteristics for the proposed injection zones are discussed in the following sections. Please

note, that the porosity type is highly dependent on the mineral composition of the rock and defines

how much pore volume is accessible to reservoir fluids, i.e., ratio of total and effective porosities.

Primary intergranular porosity results from preservation of pore space after deposition and

lithification of sediments. Microporosity, which is associated with clays, is present in the matrix

and greatly affects the volume of effective porosity accessible to reservoir fluids. As the Frio and

Wilcox formations are void of production, little interest, and therefore little site-specific data, is

currently available

2.3.2.1 Injection Zone 1 – Frio Formation

The Oligocene-aged Frio Formation consists of an interbedded sandstone and shale sequence that

rests conformably on the Vicksburg Shale. The uppermost portion of the strata is comprised of a

limestone, calcareous sandstone of the Anahuac Formation (Howe, 1962), most specifically the

Heterostegina Limestone which has been identified as a component of the Primary Confining

Zone. There is little to no core data publicly available from the Frio formation in St. Helena Parish.

Therefore, details are provided from surrounding parishes in east Louisiana.

Project Information Tracking for St. Helena Parish Site Class VI Permit Number: R06-LA-0001

Page 60 of 168

Revision Date: February 2023

Module A – Project Information Tracking

The depositional environmental of the Frio Formation in the project area is deltaic and comprised

of marginal marine sandstones and shales (progradational wedge, westward marching) overlain by

the transgressive Anahuac shale; coeval with off-axis carbonate shelf (Amphistegina).

Total mineralogy and clay mineralogy available from the CoreLabs RAPIDTM database (Gulf of

Mexico Regional Oligocene study) indicate the Frio injection zone is dominated by quartz with

progressively minor components of feldspar, clay, and calcite (Appendix B, Table B.1). The clay

component is primarily kaolinite, illite, chlorite and mixed illite/smectite (Appendix B, Table B.2).

(This dataset was purchased from the CoreLabs RAPIDTM database and is, therefore, quantitative

confidential business information (CBI) which is included in **Appendix B**).

Porosity and horizontal permeability for the Frio Injection Zone in the Shell St. Helena Parish site

is estimated using a publicly available core data collated from SONRIS and the Louisiana

Geological Survey for the Frio reservoir within 50 miles of the Baton Rouge area near the Shell

St. Helena Parish site. Porosity ranges from 16% to 30% and the horizontal permeability ranges

from 0.06 mD to 2,000 mD from available core data.

Expected Zone Capacity

This is based upon the current understanding of porosity, permeability, thickness, and lateral extent

and will be updated after collection and calibration to site specific data. Specific modeling

parameters related to the relative permeability, saturation curves, and compressibility of the

formation and injectate characteristics are contained in the "Area of Review and Corrective Action

Report [40 CFR 146.84(b)]" submitted with this permit application in **Module B.**

2.3.2.2 Injection Zone 2 – Wilcox Formation

In lieu of site-specific core data and due to limited published data for the St. Helena Parish site,

additional details on the proposed Wilcox Injection Zone is supplied from petrophysical analysis

from logs in the project area. The Wilcox in southwestern Mississippi consists of interbedded

shallow marine, brackish, and alluvial sand and shale (Rainwater, 1962).

Revision Date: February 2023

Module A – Project Information Tracking

Mineralogy and Petrology

A Wilcox regional study ternary diagram published by the BEG shows Lower and Upper Wilcox

XRD results from different locations along the Gulf Coast (Figure 2-30). The results show these

sands within the feldspathic litharenites classification. Pore types are largely primary intergranular,

with microporosity from secondary dissolution of lithic fragments. Quartz overgrowth is identified

but limited. Mechanical compaction and quartz cementation were the most important porosity-

reducing diagenetic events identified by Dutton and Loucks, 2014. Please note that this applies to

both the Upper Wilcox and Lower Wilcox sub-divisions.

The Upper Wilcox is composed of abundant amounts of quartz, mica, and carbonaceous material

as described by Glawe and Bell, 2014. Additionally, traces of glauconite and pyrite have been

identified as minerals with the uppermost Wilcox. Lowery (1988) described the varying facies

associated with the Upper Wilcox as containing extensive burrows, shell debris and bioturbated

sandstones along the stable shelf margin. Much of the facies are missing internal physical

structures, such as cross-beds. Glawe and Bell (2014) also described thin carbonate rich beds in a

core sample that were either calcareous fossils, limestone concretions, or calcite cements. Land

and Fisher (1987) determined that carbonate cement was the dominant cement in the shallower

onshore Wilcox sands.

Porosity and horizontal permeability for the Wilcox Injection Zone in the Shell St. Helena Parish

site is estimated from log evaluation and porosity to permeability transforms using publicly

available core data. This core data was collated from SONRIS and the Louisiana Geological

Survey for the Wilcox Formation within 50 miles of Baton Rouge. Porosity ranges from 10% to

26% and the horizontal permeability ranges from 0.02 mD to 500 mD from available core data.

Expected Zone Capacity

The Wilcox reservoir, located between the deeper Lower Tuscaloosa and shallower Frio

Formations, will be appraised during the drilling and testing of the Frio and Lower Tuscaloosa

appraisal wells. If the early appraisal analysis confirms feasibility of the Wilcox Injection Zone,

then additional required data for Class VI wells, such as water sample, core and well testing, will

be collected at a future date.

Page 62 of 168

Revision Number: 1 Revision Date: February 2023 Module A – Project Information Tracking

The

Wilcox Formation is included as a proposed injection zone in this permit application as it is situated between the two primary target sinks and will be adequately studied for future storage.

The injection rates and storage capacity are estimated based upon the current understanding of porosity, permeability, thickness, and lateral extent and will be updated after collection and calibration to site specific appraisal data. Specific modeling parameters related to the relative permeability, saturation curves, and compressibility of the formation and injectate characteristics are contained in the "Area of Review and Corrective Action Report [40 CFR 146.84(b)]" submitted with this permit application in **Module B.**

2.3.2.3 Injection Zone 3 - Lower Tuscaloosa Formation

The Lower Tuscaloosa Formation is separated from the base of the Wilcox (Injection Zone 2) by over 2,400 feet of impermeable layers of the Midway Shale, the Austin Chalk (Selma Formation in Mississippi), and the Eagle Ford Formation (Eutaw Formation in Mississippi). This thick sequence of impermeable formations provides additional containment barriers for the Lower Tuscaloosa Sand Injection Interval.

Regional core analysis data of the Midway Shale was procured from the Mississippi DuPont Delisle MDEQ Class I Permit Application – Well No. 5. An x-ray diffraction (XRD) analysis indicated that the core samples consisted of mainly of clay and quartz. The dominant mineralogy was illite/smectite with calcite and quartz. Minor components of plagioclase and potassium feldspars were also present. The predominant lithology of the Midway Shale is a dark gray to black, fissile, carbonaceous, and pyritic shale. The core samples occasionally included thin fine laminae of fine to very fine, moderately sorted micaceous and carbonaceous sands. Overall, the 1,200 feet of cored Midway Shale at the Delisle Site was described as uniform throughout, with swelling illite dominated clays. The formation has little to no sands, which bolster the low to impermeable characteristics that are expected to be representative of the St. Helena Parish site.

Mineralogy and Petrology

The lithology of the Lower Tuscaloosa Injection Zone is a consolidated siliciclastic reservoir, which consists of cross-bedded conglomerates, sandstones, and muddy sandstones. XRD data for eighteen samples in St. Helena Parish were available from the CoreLabs RAPIDTM database (Lower Tuscaloosa Formation study). The analysis indicated that the total mineralogy of the formation is predominately quartz, with lesser clay, and minor amounts of dolomite and calcite (Appendix B, Table B.3). The clay mineralogy was comprised of chlorite, kaolinite, and illite (Appendix B, Table B.4).

The Lower Tuscaloosa sands are the subject of a CO₂ flood in Cranfield Field, located in Adams County, Mississippi (just north of the St. Helena Parish site). The Lower Tuscaloosa has been extensively studied at Cranfield as part of the Department of Energy's carbon sequestration efforts in conjunction with the CO₂ flood. This work has been performed by the Bureau of Economic Geology, located at the University of Texas at Austin, under the auspices of SECARB, the Southeast Regional Carbon Sequestration Partnership. The Lower Tuscaloosa Formation is composed of fining-upward fluvial cycles consisting of basal cherty conglomerates overlain by coarse-grained light gray sandstones (Kordi et al., 2010). Within the sandstone beds, chlorite is a major cement type that helped preserve initial porosity and permeability by preventing secondary mineralization in the pores (Kordi et al., 2010). Secondary porosity results from rock fragment dissolution (Kordi et al., 2010). In low permeability zones, destruction of the reservoir quality includes compaction, carbonate and quartz cements, and the formation of other authigenic minerals (Kordi et al., 2010). The sandstone beds are separated by laminated mudstones and siltstones (Hosseini et al. 2012).

Porosity and horizontal permeability for the Lower Tuscaloosa in the Shell St. Helena Parish site is estimated using commercially available core data from the CoreLabs RAPID™ database (Lower Tuscaloosa Formation study). Porosity ranges from 8% to 26% and the horizontal permeability ranges from 0.05 mD to 500 mD from available core data. This is aligned with transmissibility and permeability of Lower Tuscaloosa sands estimated at several injection well sites north of the Shell St. Helena Parish site in Mississippi. Permeability data for the Lower Tuscaloosa sands are available from core, well tests, and modeling studies (Lu et al., 2013; Hosseini et al., 2012; among

many others) at the Cranfield test site. Core permeabilities from Field Well 29-12 exceed 100 millidarcies, as do permeabilities from the 31F-2 DAS test well. Some core permeabilities range up to 1,000 millidarcies (Lu et al., 2013).

Expected Zone Capacity

This is based upon the current understanding of porosity, permeability, thickness, and lateral extent and will be updated after collection and calibration to site specific data. Specific modeling parameters related to the relative permeability, saturation curves, and compressibility of the formation and injectate characteristics are contained in the "Area of Review and Corrective Action Report [40 CFR 146.84(b)]" submitted with this permit application in **Module B.**

2.4 GEOMECHANICS AND PETROPHYSICS

This section details the mechanical rock properties and in situ fluid pressures per the 40 CFR 146.82(a)(3)(iv) standard and includes information on ductility, stress, pore pressures, and fracture gradients of the sequestration complex. Mechanical rock properties describe the behavior of the framework rock matrix and pore space under applied stresses. Mechanical rock properties are described by Elastic properties (Young, Shear, and Bulk Modulus as well as Poisson's ratio) and inelastic properties (ductility, creep, clay swelling).

Changes in in-situ stresses and strains, ground surface deformation, and potential risks, such as new caprock fracture initiation and propagation or preexisting fault opening, and slippage are crucial geomechanical aspects of large-scale and long-term CO₂ storage (Rutqvist, 2002). It is important to assess all the geomechanical risks before commencing the operations of CO₂ injection. Although all the processes involved are not always fully understood, integration of all available data, such as ground surveys, geological conditions, micro-seismicity, and ground level deformation, has led to many insights into the rock mechanical response to CO₂ injection (Pan et al, 2016).

Revision Date: February 2023

Module A – Project Information Tracking

Site specific data will be collected during the drilling and testing of two appraisal wells.

Geomechanical data across the Injection Zone and the Confining Zone will be collected, along

with laboratory analyses of recovered core samples. The appraisal wells will be drilled in

accordance with the construction and testing standards for Class VI wells set forth by the USEPA,

for potential conversion at a future date. Details on the data acquisition are contained in the "Pre-

operational Testing and Logging Plan" contained in Module D.

2.4.1 Ductility

Ductility refers to the capacity of a rock to deform to large strains without macroscopic fracturing.

Ductile deformation is typically characterized by diffuse deformation (i.e., lacking a discrete fault

plane) and is accompanied on a stress-strain plot by a steady state sliding.

Yield point, compared to the sharp stress drop observed during brittle failure. In other words, when

a material behaves in a ductile manner, it exhibits a linear stress vs. strain relationship past the

elastic limit.

The ductility of a shale top seal is a function of compaction state. Uncompacted, low-density shales

are extremely ductile and can thus accommodate large amounts of strain without undergoing brittle

failure and loss of top seal integrity. Inversely, highly compacted, dense shales are extremely brittle

and may undergo brittle failure and loss of top seal integrity with very small amounts of strain.

Figure 2-31 shows the relationship between ductility and density observed for 68 shales by

Hoshino et al (1972).

Other parameters are expected to influence ductility, such as confining pressure and time. The

mechanical behavior of rock formations is not constant but changes with various conditions, such

as progressive burial as the top seal is converted from a mud to a more competent material, thus

developing higher strength. Compaction decreases ductility while confining pressure increases

ductility. Compaction is typically related to depth. Figure 2-32 from Hoshino et al (1972) shows

density and ductility vs. brittleness against depth. Ductile samples are displayed as gray circles

and brittle samples are displayed as black circles. Ductile shales did not fracture whereas brittle

shales did fracture during the experiment. According to the figure, a low-density shale at a depth

Project Information Tracking for St. Helena Parish Site Class VI Permit Number: R06-LA-0001

Page 66 of 168

Revision Date: February 2023

Module A – Project Information Tracking

of 500 m is more ductile than a highly compacted shale at a depth of 5,000 m. Finally, ductility

varies not only with depth of burial but also with time.

Holt et al (2020) emphasize how important it is to characterize to what extent shales may fail in a

brittle or ductile manner, in both cases causing possible hole instabilities during drilling, and in

the case of ductile shales, enabling permanent sealing barriers. Triaxial tests, creep tests, and other

tests tailored to follow the failure envelope under simulated borehole conditions were performed

on two soft shales. The more ductile shale was proved to form barriers both in the laboratory and

in the field. By comparing their behavior, the authors noticed that the ductile shale exhibits

normally compacted behavior while the more brittle shale is over-compacted. This points to the

stress history and possibly the grain cementation as keys in determining the failure mode. Porosity,

clay content, ultrasonic velocities, unconfined compressive strength, and friction angle may be

used as other indicators of brittle or ductile failure behavior.

Contrary to borehole collapse during drilling, shale ductility has however proved to be useful.

Successful natural shale barriers have been reported, where the annulus between casing and

formation has closed after drilling, forming an efficient seal (Williams et al, 2009; Kristiansen et

al, 2018). This is of large importance for plug and abandonment of oil wells but may also be

considered as an alternative to cement in new wells, provided that the barrier has sufficient

thickness and is formed fast enough. Obviously, the well needs to be completed in a stable

condition prior to the formation of the barrier.

On another note, ductile formations have a higher propensity to creep than brittle ones under the

same loading conditions. Creep is the tendency of solid material to deform permanently under a

certain load that depends on time and temperature. Typically, creep is divided into three distinct

stages which are primary creep (transient elastic deformation with decreasing strain rate),

secondary creep (plastic deformation with constant strain rate), and tertiary creep (plastic

deformation with accelerating strain rate), as summarized in Figure 2-33 from Brendsdal (2017)

(see also Fjaer et al., 2008; Hosford, 2005). Unless stresses are reduced, tertiary creep eventually

leads to brittle failure.

Project Information Tracking for St. Helena Parish Site

Class VI Permit Number: R06-LA-0001

Page 67 of 168

Revision Date: February 2023

Module A – Project Information Tracking

The following factors have the potential to increase or enhance creep (Kristiansen et al, 2018):

- High clay content, especially smectite,

- High shear stresses,

- Thermal deformation from heating,

- Shale/brine interaction effects.

Indeed, according to Chang and Zoback (2009), the amount of creep strain in shales is significantly

larger than that in sands with less clay, which corroborates previous observations that creep strain

increases with clay content. Microscopic inspections show that creep in shales appears to generate

a packing of clay minerals and a progressive collapse of pore spaces. The authors observed a

porosity loss and an increase of dynamic moduli in shales during creep.

Strain in uncompacted sediments is typically accommodated by creep behavior which itself may

be enhanced by high clay content that induces self-sealing properties (Meckel and Trevino, 2014;

Zoback, 2010; Ostermeier, 2001; Hart et al., 1995). This has major implications on the suitability

of confining zones because ductile deformation of mudstone seals potential leakage pathways to

the surface. These include natural pathways such as faults and man-made pathways such as well

boreholes (Clark, 1988).

Loizzo et al (2017) discuss how key parameters, such as the in-situ stress and creep properties, can

be measured or estimated from geophysical logs, geological and geomechanical information, and

active well tests. Any sedimentary formation with a clay matrix predominantly composed of

smectite is a good candidate for natural barrier. Signs of sloughing shales during drilling are an

excellent indicator of this phenomenon, but a series of geophysical investigations, provided by

logging while drilling or wireline logging, are recommended at the initial characterization stage.

Density, neutron porosity, and possibly spectral gamma ray can clarify the mineralogical

composition; these logs are routinely acquired as part of a triple combo, together with sonic wave

velocities. They will be included in the formation evaluation program for the Injection Wells at

the St. Helena Parish site. The processing of the logs to identify facies, extract petrophysical and

mineralogical properties, and estimate the strength of the rock will also be performed.

Project Information Tracking for St. Helena Parish Site Class VI Permit Number: R06-LA-0001

Page 68 of 168

Revision Date: February 2023

Module A – Project Information Tracking

Defining the maximum operating pressure of the natural barrier requires the knowledge of

mechanical properties and far-field stresses. The characterization of rock mechanical properties

(elastic properties, anisotropy, and non-linearity) has been well documented for measurements,

protocols, and practices. Young's modulus and Poisson's ratio can be estimated from the

compressional and shear wave velocities and density values obtained from the offset sonic logs,

using standard rock physics equations.

Finally, cement evaluation logs are very effective in identifying creeping shales. In fact, they

precisely measure the ultimate effect of creep, i.e., the annulus bridging by a natural barrier. One

log immediately after cementing and another one approximately a week later can help distinguish

between cement and creeping shale.

2.4.1.1 Ductility in Gulf Coast Examples

The ductility of clay/shales both in the Injection Zone and in the Confining Zone, is a function of

compaction state. Uncompacted, low-density shales are extremely ductile and can thus

accommodate large amounts of strain without undergoing brittle failure and loss of integrity.

However, highly compacted, dense, deep shales may be extremely brittle and undergo brittle

failure and loss of integrity with very small amounts of strain. Figure 2-31 shows the relationship

between ductility and density for 68 shales from the literature. All samples were deformed in

compression.

Gulf Coast shales are known to exhibit viscoelastic deformational behavior that causes natural

fractures to close rapidly under the action of in situ compressive stresses (Aumman, 1966 private

communication to R.E. Collins, DuPont consultant; Neuzil, 1986; Bowden and Curran, 1984;

Collins, 1986). Evidence of this includes rapid borehole closure often encountered while drilling

and running casing in oil and gas wells along the Gulf Coast (Johnston and Knape, 1986; Clark et

al., 1987). Furthermore, old abandoned (legacy) boreholes have been observed to heal across shale

sections to the extent that reentering them requires drilling a new borehole (Clark et al., 1987).

This property of viscoelastic deformation behavior will cause any fractures and/or faults to close

very rapidly in response to the in-situ compressive stresses, like squeezing into the fault plane from

both sides. This well-known ductile (or plastic) behavior of the geologically young Gulf Coast

Project Information Tracking for St. Helena Parish Site

Class VI Permit Number: R06-LA-0001

Page 69 of 168

Module A – Project Information Tracking

shales is amply demonstrated by the presence of shale diapir structures and the natural closure of uncased boreholes with time (Johnston and Greene, 1979; Gray et al., 1980; Davis, 1986; Clark et al., 1987; Warner and Syed, 1986; and Warner, 1988). Jones and Haimson (1986) have found that due to the very plastic nature of Gulf Coast shales, faults will seal across shale-to-shale contacts, allowing no vertical fluid movement along the fault plane.

In 1991, a Gulf Coast borehole closure demonstration was conducted as an integral part of an EPA No-Migration Petition demonstration for DuPont Sabine River Works (now INVISTA Orange) to test the natural healing of boreholes through clay/shale sections due to clay swelling and creep and to quantify natural borehole closure (Clark et al., 2005). A test well was drilled to provide additional information on the sealing effectiveness of Miocene formations, especially the clay/shales, in a simulated abandoned borehole located on the flanks of Orange Dome (salt dome) near Orange, Texas. In the testing, a worst-case strategy was evaluated, where the mechanism of swelling and plastic creep of the clay/shales was simulated by allowing the clay/shale to heal over a week's duration and then injecting fluids into the lower test sand while monitoring pressure in the next sand vertically in the section (upper monitor sand), similar to a vertical interference test. The upper gauge in the shallow monitor sand showed no change during the testing, indicating that there was no "out of zone" movement across the 90-foot thick, healed clay/shale bed. The lack of out of zone movement was confirmed via the Schlumberger Water Flow Log® that showed no migration of fluids vertically along the walls of the borehole in the healed clay/shale section.

2.4.1.2 Site Specific Ductility of the Confining Zone

To date, there are no site-specific brittleness or ductility/creep measurements area available for the confining shales and the Heterostegina Limestone specific to the AoR. All assumptions have been made using the available sonic logs, the drilling reports, and as discussed in the literature above. Ductility is assessed by measuring sample strains under applied stresses at representative reservoir conditions (*e.g.*, injection or depletion). Elastic moduli are often used as an indicator of rock creep compliance and strength, which can be related to mineral rock composition (Sone and Zoback, 2013). Site specific data will be acquired and tested on cores collected during the drilling of the injection wells (see **Module D** for the "*Pre-Operational Testing and Logging Plan*").

Revision Number: 1 Revision Date: February 2023

Module A – Project Information Tracking

2.4.2 Stresses and Rock Mechanics

In-situ stress and strain are basic concepts in the geomechanics discipline. A stress is defined as a

force over an area. If a force is perpendicular to a planar surface, the resulting stress is called a

normal stress. If a force is applied parallel to a planar surface, it is called a shear stress. A normal

stress is called either a tensile stress if the stress is pulling the material apart or a compressive

stress if the stress is compressing the material. In geomechanics, compressive stresses are

conventionally shown as positive. Strain is the deformation of the rock material in response to a

change in the corresponding effective stress. A normal strain is defined as the change in length

(caused by the change in normal effective stress) divided by its original length. A shear strain is

the ratio of the change in length to its original length perpendicular to the principal stress axes of

the element due to shear stress. A volume (or volumetric) strain is the ratio of the change in volume

to its original volume, also called a bulk strain, when all-around change in effective confining

stress is applied. These stress and strain concepts are illustrated in Figure 2-34 (Han, 2021).

The Gulf Coast Basin is generally considered as a passive margin with an extensional (normal

faulting) stress regime. In a normal faulting stress regime, the vertical stress is the greatest stress

(maximum principal stress) and is typically referred to as the rock overburden. Regional literature

from Eaton, 1969, indicates that the overburden stress gradient for normally compacted Gulf Coast

Sediments ranges from about 0.85 psi/ft near the surface to about 1.00 psi/ft at depths of about

20,000 feet. Sedimentary rocks along the central portion of the Gulf Coastal Plain experience

predominantly normal faulting, with a maximum horizontal stress oriented sub-parallel to the

coastline (Lund Snee and Zoback, 2020) and a minimum horizontal stress (i.e., the least principal

stress) oriented orthogonal to the coastline.

Published data has been used to set the orientation of the principal horizontal stresses (Meckel et

al., 2017; Nicholson, 2012; Zoback and Zoback, 1980) using regional fault-strike statistics (Figure

2-35). Geomechanical assumptions for the rock properties estimated at the St. Helena Parish site

are contained in Table 2-3. The geomechanical properties of the primary Confining Zone will be

further measured during the drilling and completion of the project's injection and monitor wells.

Project Information Tracking for St. Helena Parish Site Class VI Permit Number: R06-LA-0001

Page 71 of 168

Revision Date: February 2023

Module A – Project Information Tracking

Vertical Stress: S_v

The overburden stress, S_v, for normal-faulting stress regimes is assumed to have an average

gradient of 1.0 psi/ft (Nicholson, 2012). This is equivalent to the lithostatic pressure exerted by

rock with an average density of 2.3 g/cm³ (Hovorka, 2018). Meckel, 2017, assumed a value of

1.00 psi/ft for the Lower Miocene in the Texas Gulf of Mexico.

For the St. Helena Parish site, the S_v is calculated by integrating the composite density log obtained

from the available offset well logs. The S_v gradient varies between 0.86 psi/ft and 1.05 psi/ft.

Minimum Horizontal Stress (Shmin):

Minimum horizontal stress values are estimated using Eaton's method (Eaton 1969) and

analogue Biot coefficients. The Biot coefficient is the ratio of the volume of fluid change,

divided by the change in bulk volume (assumption that port pressure remains constant).

The range of estimated Sh_{min} resulted in values in the range of 0.60 to 0.75 psi/ft.

$$Sh_{min} = (\nu/(1-\nu))*(\sigma_{\nu} - \alpha P_P) + \alpha P_P$$

Where:

S_{hmin} is the minimum horizontal stress,

 ν is the Poisson's ratio,

 $\sigma_{\rm V}$ is the vertical stress,

 α is the Biot coefficient, assumed to be 1

Pp is the pore pressure.

Maximum Horizontal Stress (Sh_{max}): Maximum horizontal stress values were estimated by

averaging the gradients of the vertical and minimum horizontal stresses at each depth. The Sh_{max}

values are in the range of 0.75 to 0.85 psi/ft

Page 72 of 168

Young's Modulus (E):

Inelastic property that describes the relation of tensile stress to tensile strain. The ability of a material to deform.

$$E = \frac{\sigma}{\in}$$

Where:

E =Young's Modulus (pressure units)

 σ = Uniaxial stress – or force per unit surface (pressure units)

∈= Strain, or proportional deformation (dimensionless)

The Young's modulus is calculated from density, P-wave and S-wave velocities using standard Rock Physics equations. Young's modulus impacts the calculation of the fracture gradient. Young's Modulus range is calculated at 7 - 12 GPa.

Poisson's Ratio (v):

A constant that is used to determine the stress and deflection property of a material. It is a measure of the deformation of a material perpendicular to the load direction. Poisson's Ratio is also calculated from density, P-wave and S-wave velocities using standard Rock Physics equations.

$$v = \frac{d \in_{trans}}{d \in_{axial}}$$

Where:

v = Poisson Ratio (dimensionless)

 \in_{trans} = transverse strain

 \in_{axial} = axial strain

Revision Date: February 2023

Module A – Project Information Tracking

Poisson's Ratio is used to calculate Sh_{min} using Eaton's method (1969). It should be noted that the

Poisson's Ratio of most materials will fall within a range between 0.0 and 0.5. Lower Poisson's

Ratio values indicate less deformation of the material when exposed to strain, and higher values

indicate greater deformation when exposed to strain. A higher Poisson's Ratio would also indicate

that the subject material would be harder to fracture. Poisson values for the site are between 0.2

and 0.3.

2.4.3 Pore Pressures of the Injection Zone

In general, the Gulf Coast subsurface can be separated into three hydrologic zones. The shallowest

zone, fresh to moderately saline geologic section, corresponds to fresh waters (less than 10,000

mg/l total dissolved solids) and has a typically formation pressure gradient of 0.433 psi/ft of depth

(i.e., a freshwater gradient). Within the shallow interval, groundwater is directed away from the

areas where the Fleming Group crops out eastward towards the Gulf of Mexico (Kreitler and

Richter, 1986).

Underneath the fresh to moderately saline geologic section is what Kreitler and Richter (1986) call

the "Brine Hydrostatic Section". The transition is a mixing zone where meteoric waters mix with

formation waters and this exchange prevents the buildup of pressures. Formation water salinity

values range from 10,000 parts per million to 50,000 parts per million total dissolved solids

(Kreitler and Richter, 1986). In the lower parts of the brine hydrostatic section, formation water

salinity values range from 50,000 parts per million to 150,000 parts per million, with the bottom

marked by a zone of weakly overpressured sediments (Kreitler and Richter, 1986) that transition

to higher formation pressures. Kreitler and Richter (1986) propose a gradient value of 0.465 psi/ft

(approximately equivalent to 9.0 pounds per gallon mud weight) to define the initial transition to

overpressured sediments.

The third hydrologic zone is referred to as the overpressured zone. Overpressuring results when

low permeability mudstones retard or restrict expulsion of waters from compacting mudstones

(i.e., mudstones are buried quicker than they can expel water). In this case, porosity of the

sediments is reduced as water is expelled and a disequilibrium between increasing overburden due

to sedimentation and the reduction in pore volume occurs (Zhang and Roegiers, 2010). The

Project Information Tracking for St. Helena Parish Site

Class VI Permit Number: R06-LA-0001

Page 74 of 168

Revision Date: February 2023

Module A – Project Information Tracking

remaining water in the pores must support part of or all of the overburden, causing the pore

pressures of the trapped fluids to increase. This also allows for higher-than-expected porosities

(Zhang and Roegiers, 2010). Regional overpressuring indicates a lack of communication with the

shallower normally pressured brine hydrostatic section (Kreitler (1986), Zhang and Roegiers,

(2011)).

From a practical standpoint, the top of overpressure represents a maximum depth for sequestration

of carbon dioxide. For one, the system compression would need to overcome the elevated pore

pressures in the overpressured intervals, requiring higher energy demands for operations.

Secondly, as indicated above, the presence of overpressure indicates a compartmentalized system

that does not allow pressure bleed-off. This is akin to storage in a tank that does not allow for

pressures to escape the overpressured system. Lastly, in the overpressured zone the rate of pore

pressure gradient increases faster than the fracture gradient, which reduces the allowable operating

envelope as the pore pressure approaches the fracture pressure of the formations.

For the St. Helena Project, the targeted injection zones are all located in the second identified zone:

the "Brine Hydrostatic Section." As such, pore pressure data have been determined from not only

available pressure data but can be evaluated from drilling mud weights across geologic intervals.

Note: Site-specific in-situ formation pressure will be collected during the drilling of the appraisal

and injection wells at a future date. Details on testing and data acquisition are contained in the

"Pre-operational Testing and Logging Plan" submitted in Module D.

2.4.3.1 Available Data Sets

Pore pressure data was located within St. Helena Parish, in the form of three wells containing

limited Repeat Formation Testers (RFT) data and five wells with data in the form of mud logs.

Figure 2-36 is a series of location maps identifying the location of the proposed injection wells for

the sequestration project and the locations of the existing wells with data. Table 2-4 summarizes

the available mud weight data.

Project Information Tracking for St. Helena Parish Site Class VI Permit Number: R06-LA-0001

Page 75 of 168

Revision Date: February 2023

Module A – Project Information Tracking

Repeat Formation Testers

Formation fluid pressures may be obtained downhole through the use of wireline devices known

as Repeat Formation Testers (RFT). Initially designed to primarily sample formation fluids, the

RFT has also been applied to recorded downhole pressures, provide evaluations of downhole

formation conditions (e.g., permeability and formation pressures). As the use of the tool evolved,

it became more commonly used to assess reservoir pressure, recording both the pressures of the

fluids within the well, and the pore pressures of the formations encountered and pressure transient

due to fluid withdrawal for sampling.

Available RFT data was identified from three wells, the R.M. Carter No. 1 (LA SN: 190227),

Cavenham Forest Industries SWD No. 4 (LA SN: 210847), and the Leach No. 1 (LA SN: 185101).

The location of these three wells can be found in Figure 2-36 introduced above. From these three

wells, five relevant data points within the Lower Tuscaloosa were identified and evaluated. All

five points are at hydrostatic pressure. This data set did not allow for a correlation between DT

and VES.

Mud Log Data

Mud Log Data was located for five wells in northern St. Helena Parish. Mud logs with data on

mud weights and background gas levels while drilling, were located for the D. E. Wales No. 1 (LA

SN: 215166), Weyerhaeuser No. 43-1 (LA SN: 252280), C.J. Cole No. 1 (LA SN: 181663), Mina

Travis No. 1 (LA SN: 227762), and the Weyerhaeuser SWD No. 2 (LA SN: 238089) wells. The

location of these wells is shown in Figure 2-36.

Information available on a mud log may allow for the estimation of an expected minimum pore

pressure through the evaluation of locations on the mud log where increases in gas readings (both

background and total gas) occur, as well as changes in mud weight as the well is drilled. The table

of the records of the five mud logs are contained on Figure 2-36 and Table 2-4.

For the five wells studied, no increase in total gas was observed until the penetration of the Lower

Tuscaloosa. Figure 2-37 is an example of one of the mud logs wherein a sudden spike in the total

gas was observed as the well drilled into the Tuscaloosa Marine Shale. The mud weight at the time

Page 76 of 168

Revision Date: February 2023

Module A – Project Information Tracking

was a 10.2 pound per gallon (ppg), corresponding to the minimum pore pressure. Additional mud

weight analysis from three fields surrounding the St. Helena Parish site can be observed in the

Figure 2-38. Beaver Dam and Baywood are located downdip of the project site, and Greensburg

is located updip. Conclusions from this work indicated only slight overpressures were observed

during drilling. All wells finished drilling with mud weights less than 11.1 ppg. The highest mud

weights obtained were at total depth (TD). Most of the wells were drilled with a mud weight of

9.5 ppg or lower until reaching the Lower Tuscaloosa. Only one field, the Greensburg, saw an

increase in mud weight prior to reaching the Lower Tuscaloosa.

2.4.3.2 Pore Pressure Determination Methodology

For estimating the pore pressure to be encountered at the St. Helena Parish site, a five-point

prediction method was employed. This was done by subdividing the data into a table (Table 2-5).

The five-point prediction method uses five different pore pressure scenarios, from absolute low to

absolute high, with the idea that there will be little to no risk of encountering pore pressure

variables outside of the prediction range.

This gradient is derived by first calculating the mud column gradient from wellbore mud (Table

CC) from available data in the AoR. An example of a calculation, using a 9.0-lb/gal as mud weight

is shown below:

 $0.052 \times 9.0 \text{ lb/gal} = 0.468 \text{ psi/ft}$

(mud column gradient, modified from Barker, 1981)

0.052 is a conversion factor and has units of gal/ft-in²

The results are plotted as a function of depth for the geologic formations on graphs on Figure 2-

38 from all three field in the St. Helena Parish site used in the analysis.

2.4.4 Calculated Fracture Gradient

Sonic and Density logs located within the area of interest were checked against caliper logs to

ensure data quality. The map in Figure 2-39 shows the location of the wells with available Sonic

and Density Logs. The table on the figure lists the names of the eight wells with Sonic data with

additional information. Figure 2-40 is a well section showing all eight of the wells with log

Project Information Tracking for St. Helena Parish Site

Class VI Permit Number: R06-LA-0001

Page 77 of 168

Revision Date: February 2023

Module A – Project Information Tracking

coverage presented in digital format that were used for analysis. Of the eight wells identified, the

Easterly Number 1 (SN: 180858) well has the best formation coverage. However, none of the wells

have shallow formation coverage. Both Sonic and Density data were quality checked using the

equivalent Caliper and Gamma Ray logs.

Rock properties were calculated from the available dataset. Specifically, Poisson's Ratio, Young's

Modulus, Cohesion and Friction angle. Multiple realizations were calculated, including base, low

and high cases. These curves were then used to calculate both the expected Fracture Gradient and

Bore Hole Stability for the proposed Injection Wells. Due to the scarcity of data, a composite log

was generated to cover all intervals. Figure 2-41 is a display of the Rock Property Model for the

Injection Wells. With the calculated rock property model, the S_{hmin}, Fracture Gradient, and Bore

Hole Stability were then calculated.

For the shallow section (< 2,500 feet), these properties were generated from the Hauberg JH et al,

well (SN: 169854). The Sh_{min} was calculated using Eaton's equation using mixed mode analysis

derived from Hauser (2021) and Bore Hole Stability using STABOR (a Shell proprietary elasto-

plastic finite-element model), a standardized borehole stability analysis tool within Shell (Hansen

et al., 2013). The computational core of STABOR is based on the DIANA finite-element software.

The required inputs for STABOR include rock properties, earth stresses/formation pore pressure,

and borehole geometry. Optimum mud weight can be estimated based on the inputs and tolerable

plastic strain to ensure stable borehole during drilling.

Sh_{min} is estimated by Eaton's Method (Eaton, 1969) using Poisson's ratio. Eaton's Method has

been historically used by the EPA and State Regulatory agencies to define maximum injection

pressures for Class I injection wells that have historically operated throughout the Gulf Coast

Region. However, in Shell, we use Mixed Mode Analysis for Fracture Gradient. As evidenced by

Figure 6 in Hauser (2021) (Figure 2-42), all available data points indicated that Fracture Gradient

have a wide range of values between Shmin and Tensile Initiation Point. Hence Mixed Mode

Analysis, taking into account tensile strength of the rock, is chosen as appropriate for this analysis.

In order to further assess a range of possibilities based on the stress regime, two sets of Fracture

Gradient were generated both using the base case pore pressure, one using a more isotopic stress

Project Information Tracking for St. Helena Parish Site

Class VI Permit Number: R06-LA-0001

Page 78 of 168

Revision Date: February 2023

Module A – Project Information Tracking

(0.8 Sh_{min} + 0.2 OBG) and the other a less isotropic stress (0.5 Sh_{min} + 0.5 OBG). Figure 2-43

shows a plot of both cases, with the less and more isotropic stresses considered. Both cases can be

classified as a normal faulting stress regime with the overburden stress as the maximum principal

stress consistent with the stress state observed in the region.

In accordance with 40 CFR 146.88(a), Shell will operate the St. Helena Parish site at operating

pressures of less than 90 percent of the calculated fracture pressure. The maximum safe operating

pressures for each formation are presented in Table 2-5 and graphical form in Figure 2-44. Note

that the presence of overpressure in the Lower Tuscaloosa strata is not considered in the analysis

and may limit the depth of available sequestration sandstones in the area.

Site-specific testing for formation pressures in the subsurface will be undertaken during

construction of project wells. Mini-frac tests on wireline or step rate tests performed after well

construction, along with the results of other logs and core tests, will be used to verify that

information provided in the permit application related to the fracture pressure of the injection and

confining zones is correct. If the calculated fracture pressures of the injection and/or confining

zones differ from the assumptions on which injection rates and pressures in this Class VI permit

are based, permit conditions will be revised accordingly. Additionally, if there is/are any

uncertainty or inconsistencies in calculated fracture pressures within the injection or confining

zones, the maximum injection pressure limit may need to be reevaluated based on these data and

may be revised to less than 90 percent of the fracture pressure of the injection zone.

2.5 SEISMICITY

An earthquake is a sudden shaking of the ground caused by the passage of seismic waves through

the Earth after two blocks of rock material suddenly slip past one another beneath the Earth's

surface. The plane where they slip is called the fault. The location below the Earth's surface where

the earthquake starts is called the hypocenter, and the location directly above it at the surface of

the Earth is called the epicenter. Seismic waves are elastic and travel at the speed of sound. These

waves may be felt by humans and can produce significant damage far away from the epicenter.

Project Information Tracking for St. Helena Parish Site Class VI Permit Number: R06-LA-0001

Page 79 of 168

Revision Date: February 2023

Module A – Project Information Tracking

The size of an earthquake can be expressed by either intensity or magnitude. Magnitude is based

on an instrumental recording that is related to energy released by an earthquake, while intensity

describes the felt effects of an earthquake:

Intensity - Number describing the severity of an earthquake evaluated from the effects

observed at the Earth's surface on humans, structures, and natural features. Several scales

exist, but the Rossi-Forel scale (before 1931) and the Modified Mercalli scale (after 1931)

are the most commonly used in the United States. Intensity observations are employed to

construct isoseismal maps wherein areas of equal shaking effects are contoured.

Magnitude - Instrumental measurement of the energy released by an earthquake recorded

by seismometers or seismographs. The seismometers record the degree of ground shaking

at a distance from the event and all stations should read similar values from the same

seismic event. In other words, the magnitude of the earthquake does not change with

distance and a single value describes the earthquake. Dr. Charles F. Richter introduced the

Richter Scale, which measured the scale of earthquake magnitudes. Following the Richter

Scale, there have been several magnitude scale modifications based on the type of seismic

wave, epicenter distance, and other factors (Leeds, 1989).

Instrumental seismology is equally as important as historic records. Instrumentation (such as

seismographs) allows determination of seismic events much smaller than those which can be felt

at the Earth's surface. Thus, a catalog of seismic events may contain a wide range of events that

are instrumentally recorded but not felt by humans. Also, since seismic waves attenuate with

distance and because all regions cannot be adequately covered by seismographs, many small

events are felt, but not always detected. Sensitive seismographs, which greatly magnify these

ground motions, can detect strong earthquakes from sources anywhere in the world. The time,

locations, and magnitude of an earthquake can be determined from the data recorded by

seismograph stations.

The Richter magnitude scale was developed in 1935 by Charles F. Richter of the California

Institute of Technology as a mathematical device to compare the size of earthquakes. The

Project Information Tracking for St. Helena Parish Site

Class VI Permit Number: R06-LA-0001

Page 80 of 168

Revision Date: February 2023

Module A – Project Information Tracking

magnitude of an earthquake is determined from the logarithm of the amplitude of waves recorded

by seismographs. Adjustments are included for the variation in the distance between the various

seismographs and the epicenter of the earthquakes. On the Richter Scale, magnitude is expressed

in whole numbers and decimal fractions. For example, a magnitude 5.3 might be computed for a

moderate earthquake, and a strong earthquake might be rated as magnitude 6.3. Because of the

logarithmic basis of the scale, each whole number increase in magnitude represents a tenfold

increase in measured amplitude; as an estimate of energy, each whole number step in the

magnitude scale corresponds to the release of about 31 times more energy than the amount

associated with the preceding whole number value.

At first, the Richter Scale could be applied only to the records from instruments of identical

manufacture. Now, instruments are carefully calibrated with respect to each other. Thus,

magnitude can be computed from the record of any calibrated seismograph.

Earthquakes with magnitude of about 2.0 or less are usually referred to as micro-earthquakes; they

are not commonly felt by people and are generally recorded only on local seismographs. Events

with magnitudes of about 4.5 or greater - there are several thousand such shocks annually - are

strong enough to be recorded by sensitive seismographs all over the world. Great earthquakes,

such as the 1964 Good Friday earthquake in Alaska, have magnitudes of 8.0 or higher. On average,

one earthquake of such size occurs somewhere in the world each year.

The Richter Scale has no upper limit. Recently, another scale called the moment magnitude scale

has been devised for more precise study of great earthquakes. The Richter Scale is not used to

express damage. An earthquake in a densely populated area which results in many deaths and

considerable damage may have the same magnitude as a shock in a remote area that does nothing

more than frighten the wildlife. Large-magnitude earthquakes that occur beneath the oceans may

not even be felt by humans.

Project Information Tracking for St. Helena Parish Site Class VI Permit Number: R06-LA-0001

Page 81 of 168

Revision Date: February 2023

Module A – Project Information Tracking

The effect of an earthquake on the Earth's surface is called the intensity. The intensity scale consists

of a series of certain key responses such as people awakening, movement of furniture, damage to

chimneys, and finally - total destruction. Although numerous intensity scales have been developed

over the last several hundred years to evaluate the effects of earthquakes, the one currently used in

the United States is the Modified Mercalli (MM) Intensity Scale. It was developed in 1931 by the

American seismologists Harry Wood and Frank Neumann. This scale, composed of 12 increasing

levels of intensity that range from imperceptible shaking to catastrophic destruction, is designated

by Roman numerals. It does not have a mathematical basis; instead, it is an arbitrary ranking based

on observed effects.

The Modified Mercalli Intensity (Figure 2-45) value assigned to a specific site after an earthquake

has a more meaningful measure of severity to the nonscientist than the magnitude because intensity

refers to the effects experienced at that place. After the occurrence of widely felt earthquakes, the

Geological Survey mails questionnaires to postmasters in the disturbed area requesting the

information so that intensity values can be assigned. The results of this postal canvass and

information furnished by other sources are used to assign an intensity within the felt area. The

maximum observed intensity generally occurs near the epicenter.

The *lower* numbers of the intensity scale generally deal with the manner in which the earthquake

is felt by people. The higher numbers of the scale are based on observed structural damage.

Structural engineers usually contribute information for assigning intensity values of VIII or above.

2.5.1 Regional Seismic Activity

Seismically, the Gulf Coastal Plain is one of the least active regions of North America (Figure 2-

46) as detailed by seismic hazard. This area of Louisiana and adjacent states has a very low rating

for seismicity as determined via the United States Geological Survey (USGS). Natural seismicity

in the Gulf Coastal Plain is attributed primarily to flexure of sediments along hinge-lines that

parallel the coast. This flexure is due to compression and down warping of the immature Gulf of

Mexico basin sediments in response to extreme sediment loading. Structural features such as salt

domes and growth faults, although capable of storing and releasing some seismic energy, are weak

and ineffective in generating even modest ground motion.

Project Information Tracking for St. Helena Parish Site Class VI Permit Number: R06-LA-0001

Page 82 of 168

Revision Date: February 2023

Module A – Project Information Tracking

Salt domes are the result of plastic flowage of salt that pierces or ruptures adjacent sedimentary

layers or causes doming in the overlying sedimentary layers. These sediments have low density,

poor cementation, and low shear strength, which results in a low shear modulus. It is doubtful that

a salt dome could develop earthquakes with a magnitude greater than 3.0 on the Richter Scale.

Small earthquakes may be felt locally but are unlikely to propagate damaging ground motions. As

indicated in Section 2.2.3 the sequestration site is not located near any salt diapirs as the facility is

located well south of the Mississippi Salt Dome Basin. No salt domes exist within St. Helena

Parish.

The regional fault systems in southernmost Louisiana are syndepositional growth faults, originally

formed during periods of accelerated basin subsidence and sedimentary deposition. In general,

mechanisms invoked to explain the formation of growth faults have included overloading in areas

of rapid sedimentation, differential compaction of deposited sediments, abnormally high fluid

pressures, and gravity sliding. An extensional stress province is associated with growth faulting

from northeastern Mexico to Louisiana. The maximum horizontal stress is subparallel to the

coastline, following the strikes of the growth faults (Lund Snee and Zoback, 2016).

The seismic activity in this part of the coastal plain is among the lowest in the United States and

has been assigned the lowest coefficients. It should be also noted that none of the earthquakes that

have occurred in Louisiana has been attributed to any specific fault, however, this may be due to

the paucity of seismograph stations located in the state (Stevenson and McCulloh, 2001).

The largest regional earthquake occurrence in Louisiana is the 1983 event at Lake Charles, which

originated at a depth of 14+ km and had a Mercalli magnitude of approximately IV (light shaking

and dishes rattling). This depth is located well below the proposed injection depths beneath the

proposed sequestration site. Even more distant seismic regions (e.g., New Madrid Zone in

Southeastern Missouri) have not developed events great enough to cause damage at a sequestration

site.

Project Information Tracking for St. Helena Parish Site Class VI Permit Number: R06-LA-0001

Page 83 of 168

Revision Date: February 2023 Module A – Project Information Tracking

2.5.2 Seismic Risk of the Project Site

A preliminary seismic risk evaluation is conducted for the project area. The sequestration area is

within the Shell St. Helena Parish, in an area with no faulting or salt dome movement. Overall

seismic risk is rated *very low* based on:

• Low frequency of natural earthquake events near the sequestration area;

• Low intensity of natural earthquakes felt in the sequestration area, with maximum ground

motion on the surface being less than or equal to a Modified Mercalli Intensity (MMI)

range of IV;

• Low population density in the area limiting exposures and impacts;

Lack of injection-induced seismicity in Class I or Class II wells operating in the area;

• Lack of current large-scale oil and gas production in the area; and

• No known faults in the AoR and only minor faults in the extended Area of Interest (AoI),

primarily interpretable in the Lower Tuscaloosa strata

Typical geologic structures characterizing this province are gently southernly dipping and

thickening sedimentary strata. These strata are show minimal disruption by minor normal fault

systems primarily interpretable in the deepest interval of interest (Lower Tuscaloosa) outside the

AoR within the St. Helena Parish (Figures A.8 and A.9 in Appendix A) The nearest major fault

feature/system is located much further south in Livingston Parish (Figure 2-47).

The sequestration site in St. Helena Parish, Louisiana is found in area IV of the Modified Mercalli

Intensity Scale (MMI) (Figure 2-46). Structural features such as salt domes and growth faults,

although capable of storing and releasing some seismic energy, are weak and ineffective in

generating even modest ground motion. None of these features are located near the sequestration

site.

Evaluations have been performed to determine the possible effects of natural events on (1) the

integrity of well construction materials; and (2) the integrity of both the Injection and Confining

Zones beneath the St. Helena Parish sequestration site. A review of "The National Earthquake

Project Information Tracking for St. Helena Parish Site Class VI Permit Number: R06-LA-0001

Page 84 of 168

Revision Date: February 2023

Module A – Project Information Tracking

Information Center" (NEIC) (http://earthquake.usgs.gov/contactus/golden/neic.php) indicates that

the St. Helena Parish area has a low potential for seismic activity. In 1989, David J. Leeds, a

certified geophysicist and engineering geologist, conducted a regional evaluation on seismicity.

Leeds (1989) identified seismogenic sources, modeled a "design earthquake," and discussed the

effects of the "design" earthquake on potential Injection and Confining Zones. The natural

seismicity by the Leads' study indicates that seismicity is not expected to be significant issue at

the project site.

A NEIC database search within a 100-kilometer (approximately 62 miles) radius of the proposed

injection sites (blue circle on Figure 2-48) was conducted in November 2022. A tabulation of the

results is contained in Table 2-7 and are presented in Figure 2-48. The search shows that since

1900, three earthquakes with magnitudes greater than 2.5 were recorded within 100 kilometers

(approximately 62 miles) of the project site. Only one of these events have occurred near St. Helena

Parish (Figure 2-49) and are highlighted in yellow on Table 2-7.

The closet recorded earthquake occurred in 2010 which was recorded as a 3.0 magnitude

earthquake, at a relatively shallow depth of 0.4 km. It was located at the western border of the St.

Helena Parish, approximately 10.9 miles west of Greensburg, St. Helena Parish, Louisiana (Figure

2-49). Note that many of the recorded earthquakes are located outside of Louisiana, supporting the

low regional hazard assessment provided by the USGS.

At the project site, the likelihood of an earthquake caused by natural forces or fluid injection is

considered remote. Injection into the formations will be at relatively low pressures and will take

place into deep, high-porosity formations that are extensive over a broad area that is not subject to

natural earthquakes. Therefore, the probability of an earthquake of sufficient intensity to damage

the injection system, injection well, or the confining layer is very low.

2.5.3 Induced Seismicity Analysis at the Project Site

Real world examples for this sequestration project are available from Class I injection well sites

located along the Texas-Louisiana-Mississippi Gulf Coast, roughly extending from Corpus Christi

in South Texas to Pascagoula, Mississippi. These sites include both hazardous and nonhazardous

fluid effluent disposal wells that typically operate in the +/- 300 to 500 gallons per minute injection

Class VI Permit Number: R06-LA-0001

Page 85 of 168

Revision Date: February 2023

Module A – Project Information Tracking

range, with maximum injection approaching 1,000 gallons per minute. Many of these sites have

been operating since the 1970's and a few as far back as the 1950's. There is no known evidence

of injection-induced seismicity or suspected injection-induced seismicity at or near any of these

Class I injection facilities, many of which are near high-population areas.

Assessment of the potential for induced seismicity at these locations follows the methodology

outlined below, using the very conservative "zero-cohesion Mohr-Coulomb failure criterion"

recommended by the USGS (Wesson and Nicholson, 1987). These analyses indicate very low

potential for induced seismicity caused by pressures resulting from injection activities. Examples

are available, such as long-term Class I injection operations at sites like Chemours Delisle, Denka

Pontchartrain, INV-Orange, Lyondell Channelview, Rubicon Geismar, etc., among others, which

are all regulated by the EPA.

Additionally, the sequestration project will be injecting into the Frio, Wilcox, and Lower

Tuscaloosa Formations, which are located many thousands of feet above the crystalline basement

complex. Injection into strata near or at the basement, with activation of pre-existing faults, has

been identified as contributing to induced seismicity in those parts of the country where deep

injection occurs.

Despite the long history of Class I and Class II disposal along the Texas-Louisiana Gulf Coast,

there is no regional-scale or operational trends associated with induced seismicity in or near the

sequestration project or in similar hydro-mechanical areas such as those documented in Skoumal

et al. (2018, 2021) and Weingarten et al., (2015).

Finally, as mentioned in Section 2.5.1 typical regional geologic structures, characteristics of the

Gulf Coast, include gently coastward dipping and thickening sedimentary strata of Tertiary to

Cretaceous age that are disrupted by radial faults originating from salt or shale piercement domes,

syndepositional growth and regional fault systems, and post-depositional faults. However, in the

AoR of the proposed site, there are no known faults or salt structures that would impact the

integrity of the injection zone or have the potential for fault reactivation due to injection operations.

Minor faults outside the AoR have been evaluated for fault stability under the pressures increases

Project Information Tracking for St. Helena Parish Site Class VI Permit Number: R06-LA-0001

Page 86 of 168

Revision Date: February 2023

Module A – Project Information Tracking

predicted during injection of the volumes of CO₂ possible for the site and the risk of reactivation

is estimated to be very low.

2.5.4 Seismic Risk Models for the Project Site

The purpose of an earthquake model is used to evaluate any potential effects of natural earthquakes

on subsurface geological structures associated with the sequestration project. In general, a source

mechanism is required when designing a "model" earthquake. In these cases, it is usual to have a

"known" active fault system with a measured strain or stress field. In more active regions of the

earth, faults with strain (movement across the fault without a rupture) develop at a rate of up to 5

centimeters per year, or more (Leeds, 1989). As a meter or more of strain develops, stress

accumulates and eventually the system releases this stored strain energy in the form of elastic

waves (e.g., an earthquake). Although the Texas/Louisiana Gulf Coast contains several geological

features capable of storing and releasing stored energy, all are weak or ineffective in terms of

generating even modest ground motion (Leeds and Associates, 1989).

Growth faults have also developed along the Texas/Louisiana Gulf Coast which may be

responsible for seismic activity. Considering the Gulf Coast as a whole, a level of Mb=4.2 is

considered an upper level for this kind of source in this area (Leeds and Associates, 1989). The

several low magnitude events within about 50 miles of the coastline are probably attributable to

this mechanism.

The possibility that growth faults may be triggered by faults in the basement is suggested by

Stevenson and Agnew (1985) in their discussion of the Lake Charles Earthquake. Details of the

event were developed from recordings of Department of Energy supported microseismic networks

deployed for monitoring geothermal experiments (withdrawal and injection) in southern

Louisiana. The interpreted depths of 14+ km for these events are deeper than have previously

been reported and well beneath anticipated injection depths for the sequestration project.

Additionally, none of the events were attributable to the geothermal extraction/reinjection

operations (Stevenson (pers comm.), in Leeds and Associates, 1989).

However, in the area of St. Helena Parish and neighboring parishes, there are no known faults in

the AoR, minor faults in the larger study area, and the risk level is estimated to be very low. The

Class VI Permit Number: R06-LA-0001 Page 87 of 168

Revision Date: February 2023

Module A – Project Information Tracking

closest known major regional tectonic feature is the Baton Rouge Fault system, which is located

more than 20 miles south of St. Helena Parish. However, the movement associated with this fault

system is that of gradual creep as opposed to the rapid breaking of brittle rock associate with

earthquakes. No earthquakes have been documented associated with the Baton Rouge Fault

System (Stevenson and McCulloh, 2001).

2.5.4.1 Design Earthquake Model

For the evaluation of the potential impact of seismicity on a Class VI Sequestration facility in the

St. Helena Parish, a modeled seismic event with a body-wave magnitude Mb of 4.2 ± 0.2 (as

presented above for growth faults in the region) can be used as a conservative working model for

the design earthquake. It is presumed that the nearest seismic source area would be along one of

the coast parallel growth faults (Leeds and Associates, 1989). Another assumption is that the

maximum ground motion at the surface generated by the design earthquake would be within the

Modified Mercalli Intensity range of MMI=V, which equates to a horizontal surface acceleration

of 0.05g (Leeds and Associates, 1989). The empirical correlation between intensity and

acceleration has a wide spread of data, with recordings varying from horizontal accelerations of

0.025g to 0.150g for an MMI=V event. This is the same value used for an "Operating Basis

Earthquake" (OBE) for certain Gulf Coast nuclear power plant electric generating stations. For

example, the Nuclear Regulatory Commission's estimate for the risk each year of an earthquake

intense enough to cause core damage to the reactor at River Bend (north of Baton Rouge) was 1

in 40,000 according to an NRC study published in August 2010 (Hiland, 2010).

The Operational Basis Earthquake (OBE) is defined by US Federal Regulations 10 CFR 100,

Appendix A, as follows:

'The Operating Basis Earthquake is that earthquake which, considering the regional and

local geology and seismology and specific characteristics of local subsurface material,

could reasonably be expected to affect the plant site during the operating life of the plant;

it is that earthquake which produces the vibratory ground motion for which those features

of the nuclear power plant necessary for continued operation without undue risk to the

health and safety of the public are designed to remain functional.'

Project Information Tracking for St. Helena Parish Site Class VI Permit Number: R06-LA-0001

Page 88 of 168

Revision Date: February 2023

Module A – Project Information Tracking

The design earthquake in this study is based on the empirical data of normal shallow focus (<20

km) earthquakes on soft sites (Leeds and Associates, 1989). It is also assumed that in the Gulf

coastal seismic environment, the release of energy from less competent materials than usual would

result in longer surface rise times; therefore, the ground motion would be biased to longer periods

(lower frequencies) than usual, and result in low accelerations, large displacements, and long

durations.

Over the years, studies of the effect of depth on seismic ground motion have all noted a clear

attenuation. Observations in deep mines and boreholes have confirmed this phenomenon. Data

strongly indicates dampening of amplitude with depth to an average of one-half, or less, of the

ground motion. The motion may become as low as one-fifth while for small motions, where the

materials remain completely elastic, the diminution of amplitude may be as small as one-tenth

(Leeds and Associates, 1989).

The effect of ground motion on saturated granular soils is buildup in pore water pressure. If the

water table is located near the surface (within about 15 to 20 feet), if the sands are reasonably well

sorted and clean (free of clay), and if accelerations exceed about 0.25g, a type of soil failure known

as liquefaction can occur (Leeds and Associates, 1989). Liquefaction causes a loss of shear strength

of the soil and may result in ejection of sand and water to the surface (sand boils), and collapse of

the foundations of structures supported by the soil. In extreme cases, multistory buildings have

rolled over (Niigata, Japan Earthquake in 1964) and buried tanks have "floated" to the surface

(Leeds and Associates, 1989). There is indeed settlement and densification of the soil following

liquefaction. The sequestration project area does not meet the conditions expected to trigger

liquefaction since the predicted acceleration levels (0.05g) would only be about one-fifth of that

required (Leeds and Associates, 1989).

With depth increasing, there is less ground motion. While pore pressures could increase, the soils

framework is not required to support the lithostatic sediment column. Additionally, within the

short duration of shaking, there is insufficient time or room for the fluids to go to. Thus, it remains

incompressible. Leeds and Associates (1989) conclude that possible interactions between

sedimentary horizons due to casing penetration and cement are minimal since there are only minor

differential movements as the seismic waves pass through the matrix. They conclude that there

Project Information Tracking for St. Helena Parish Site

Class VI Permit Number: R06-LA-0001

Page 89 of 168

Revision Date: February 2023

Module A – Project Information Tracking

might be only several centimeters of displacement over the wavelength of the seismic waves and

that the normal elasticity of well casing and tubing is sufficient to accommodate the strain (Leeds

and Associates, 1989). It is only in extreme cases, such as in 1952 in Kern County, California,

where surface accelerations can reach 0.50g and there are many miles of surface rupture, that

existing wells may be affected. During the 1952 event, approximately 2% of the wells in the area

had some surface damage due to settlement of surficial soils (Leeds and Associates, 1989). This

event caused some subsurface damage including collapsed tubing near the surface due to the sharp

rise in casing pressure accompanied the shock. However, all wells returned to normal status within

2 or 3 weeks of the event (Leeds and Associates, 1989).

After reviewing data from the largest historic events of the province and modeling a "design

earthquake," the hypothetical modeling results show an event with little damage to engineered

structures or facilities. Ground motion due to seismic activity is attenuated with depth. Thus, no

damage to the well systems would be anticipated.

In the Gulf Coast region and St. Helena Parish area, only small earthquakes have occurred in the

area, such as the 2010 earthquake with a magnitude earthquake of 3.0 that occurred west of the St.

Helena Parish area. Larger earthquakes of MMI=V (equivalent to a 4.0-4.9 magnitude earthquake,

according to Leeds, this is still classified as small) have occurred in the Gulf Coast region and did

not cause damage to nearby facilities and structures. The few historical seismic events in the Gulf

Coast area indicate that there is little chance of an event occurring in the vicinity of Shell St. Helena

Parish Site.

2.5.4.2 Induced Seismicity Model

Shell employs conservative assumptions to the causative mechanisms of induced seismicity and

the geomechanical conditions within the St. Helena Parish area of interest to conservatively

constrain parameters. The potential for induced seismicity at the proposed injection site can be

evaluated using the very conservative "zero-cohesion Mohr-Coulomb failure criterion,"

recommended by the U.S. Geological Survey (Wesson and Nicholson, 1987). This method is based

on the following equation:

Project Information Tracking for St. Helena Parish Site

Class VI Permit Number: R06-LA-0001 Page 90 of 168

Revision Number: 1 Revision Date: February 2023 Module A – Project Information Tracking

$$P_{crit} = \frac{S_{\nu}(3\alpha - 1)}{2} \tag{1}$$

where:

 P_{crit} = the critical injection zone fluid pressure required to initiate slippage along faults and fractures

 S_v = the total overburden stress (which represents the maximum principal stress in the Gulf Coast region)

 α = the ratio of the minimum principal stress (horizontal in the Gulf Coast region) to the maximum principal stress (overburden stress)

Inherent in Equation (1) are a number of conservative assumptions, guaranteed to produce a worst-case lower bound to the critical fluid pressure for inducing seismicity. These are:

- 1) It neglects the cohesive strength of the sediments
- 2) It assumes that a fault or fracture is oriented at the worst possible angle
- 3) It assumes a worst-case value of 0.6 for the coefficient of friction of the rock (see Figure 4 of Wesson and Nicholson, 1987)

For present purposes, Equation (1) can be expressed in a more convenient form by introducing the so-called matrix stress ratio (K_i) (Matthews and Kelly, 1967; Eaton, 1969), which is defined as the ratio of the minimum to the maximum "effective" principal stresses. Effective principal stress is equal to actual principal stress minus fluid pore pressure (p_o). Thus:

$$K_i = \frac{\alpha S_v - p_o}{S_v - p_o} \tag{2}$$

Substituting Equation (2) into Equation (1) yields:

Revision Number: 1 Revision Date: February 2023 Module A – Project Information Tracking

$$\Delta P_{crit} = \left(\frac{3K_i - I}{2}\right) \left(S_v - p_o\right) \tag{3}$$

where ΔP_{crit} is the critical injection zone pressure build-up required to induce seismicity, with:

$$P_{crit} = p_o + \Delta P_{crit} \tag{4}$$

Equation (3) will be used to evaluate induced seismicity at the St. Helena sequestration site.

Initial plots at the injection depths were evaluated for a pressure gradient across each of the injection zones. The analysis determined an initial pore pressure (p_o) of 0.47 and 0.48, square inch (psi) per foot of depth for the Frio and Wilcox Formations. The Lower Tuscaloosa gradient may range from 0.53 psi/ft (low-end) to 0.57 psi/ft (high-end), which is based upon the variable spread of the available data. Eaton (1969) provides a plot of the effective overburden stress (S_v) as a function of depth for locations along the Gulf Coast. This plot indicates S_v values exceed 0.90 psi/ft for the Injection Zone reservoirs. Matthews and Kelly (1967) provide a plot of the matrix stress ratio (K_i) for tectonically relaxed reservoir sediments along the Louisiana and Texas Gulf Coast.

The project injection wells will be completed across three Injection Zones: 1) Frio, 2) Wilcox, and 3) Lower Tuscaloosa formations at depths ranging from 4,500 feet to 14,500 feet (approximate). The conservatively calculated critical pressure increase required to induce seismicity on a pre-existing fault for each Injection Zone formation for the St. Helena sequestration site are contained in Table 2-8. This value is significantly higher than any of expected and modeled pressures at the injection site. Since there are no known faults or fractures within the AoR and only minor faults interpreted in the deepest strata in the larger study area for this project, there is low probability of induced seismicity at this sequestration project.

2.6 HYDROGEOLOGY

The primary regulatory focus of the USEPA injection well program is protection of human health and the environment, including protection of potential underground sources of drinking water (USDWs). A USDW, as defined in 40 CFR 144.3, means an aquifer or its portion:

Revision Number: 1 Revision Date: February 2023

Module A – Project Information Tracking

(a)

(1) Which supplies any public water system; or

(2) Which contains a sufficient quantity of ground water to supply a public water system;

and

(i) Currently supplies drinking water for human consumption; or

(ii) Contains fewer than 10,000 mg/l total dissolved solids; and

(b) Which is not an exempted aquifer.

The following sections detail the regional and local hydrogeology and hydrostratigraphy [40 CFR

146.82(a)(3)(vi), 146.82(a)(5)].

2.6.1 Regional Hydrogeology

In August of 2019, the Council on Watershed Management agreed to use eight watershed regions

within Louisiana and was designated the Louisiana Watershed Initiative. Watersheds are

geographic areas that have drainage patterns to specific waterbodies. The watersheds for Louisiana

are presented in Figure 2-50, with a focus on Region 7, which contains St. Helena Parish. The

associated river basins are also presented. It is noted that the Region 7 Watershed contains the

Mississippi, Pontchartrain, and Pearl rivers.

The predominant aquifers of Louisiana by location, presented in Figure 2-51, occur within

Paleocene and younger formations, and contain usable quality water (<3,000 milligrams per liter

(mg/L) TDS). These aquifer systems regionally crop out in bands parallel to the Mississippi

Embayment and dip and thicken towards the southeast.

There are four major regional aquifer systems of importance in Louisiana (Figure 2-52):

• Sparta Aquifer

• Mississippi River Alluvial Aquifer

• Chicot Aquifer System

• Southern Hills Aquifer System

Project Information Tracking for St. Helena Parish Site

Class VI Permit Number: R06-LA-0001 Page 93 of 168

Revision Date: February 2023

Module A – Project Information Tracking

Figure 2-53 contains a hydrostratigraphic column for the State of Louisiana. This column denotes

the aquifer units for the regions of the state, and the southeastern portion has been highlighted (red

box outline) as this provides the regional context applicable to the study.

Groundwater moves through aquifer systems from areas of high hydraulic head to areas of lower

hydraulic head. Regional uses from industry and the public water systems have some impacts on

diverting the direction of flow. Published potentiometric maps for the regional aquifers are

provided and discussed in the sections below.

2.6.1.1 Sparta Aquifer System

The Sparta Aquifer extends from northeast Texas to central Mississippi and is comprised of

Eocene-aged deposits. It is a major source of freshwater in the north-central part of Louisiana and

Arkansas and mimics the ancestral Mississippi Embayment (Figure 2-54). The Sparta aquifer is

recharged through direct infiltration of rainfall, the movement of water through overlying terrace

and alluvial deposits, and leakage from the Cockfield and Carrizo-Wilcox aquifers (ASSET

Aquifer Summaries 2012 [prepared by Louisiana Department of Environmental Quality] – Sparta

Aquifer). The base of the unit is medium to fine grained sand that grades upwards into clay. The

Sparta sand ranges in thickness from 500 to 900 feet in the areas it contains freshwater (Rollo,

1960). The Sparta sand thins over structural highs in the region, notably the LaSalle Arch and

Monroe Uplift (see section 2.1).

Although the Sparta sand is predominantly of continental origin in the delta area, brief local

invasions of the sea repeatedly covered low-lying areas of the land mass (Payne, 1968). Occasional

inclusions of fossils and glauconite are representative of the change in source material. The

multiple sand layers and lenses in the geologic unit may be connected locally (Brantly et al., 2002).

The Sparta is confined by the lower permeable strata of the Cook Mountain Formation (overlying)

and the underlying Cane River Formation (see section 2.1).

The Sparta Aquifer provides usable groundwater for fifteen parishes in north-central Louisiana,

primarily for public supply and industrial purposes (McGee and Brantly, 2015). This does not

include the St. Helena Parish, where the sequestration site is located. Within the St. Helena Parish,

Project Information Tracking for St. Helena Parish Site

Class VI Permit Number: R06-LA-0001

Page 94 of 168

Revision Date: February 2023

Module A – Project Information Tracking

the Sparta aquifer system is at much deeper depths than the USDW, and the formation fluid is

highly saline (> 10,000 ppm TDS; based on log analysis and drilling records in the area). For the

Sparta aquifer, hydraulic conductivity generally ranges from 10 to 200 feet per day (feet/d) with

an average of about 70 feet/d over the extent of the Mississippi Embayment (Hosman and others,

1968). The regional flow direction for the Sparta Aquifer is eastward, towards the axis of the

Mississippi Embayment. Within Louisiana, the regional flow is towards the city of Monroe in

Ouachita Parish (Figure 2-55).

2.6.1.2 Mississippi River Valley Alluvial Aquifer (MRVA)

This system is comprised of Pleistocene and Holocene-aged sediments. The Pleistocene deposits

are of two general types; an approximately coastwise, gulfward thickening wedge of deltaic

sediments and the relatively thin, veneer-like deposits which form the stream terraces and alluvial

valley fill (Rollo, 1960). The system contains gravel to coarse-grained sand at the base and fines

upwards into clays. In some localized areas, the surface is covered with impermeable clays.

It is a major source of freshwater in the north-northeastern part of Louisiana and into the

Mississippi. Recharge to the Mississippi River alluvial aquifer is primarily from precipitation and,

to a lesser degree, by leakage from underlying sediments such as the Cockfield aquifer (Prakken,

et al., 2014). The MRVA discharge and recharge is also controlled by surface water features that

may cross the strata, such as rivers and lakes. This aquifer system can be separated into two

hydrogeologic units, an upper confining unit of silt, clay, and fine sand that impedes the downward

movement of water into a lower coarse sand and gravel aquifer unit (Martin and Whiteman, 1985).

The aquifer ranges in depth from 60 to 260 feet in the areas it contains freshwater.

The MRVA is used as a primary aquifer in twenty-seven parishes in central Louisiana, and runs

north to south, mimicking the Mississippi River (Figure 2-52). The MRVA is hydraulically

connected to the Mississippi River and flows from high to low hydraulic head. For the MRVA

aquifer, hydraulic conductivity generally varies between 10 to 530 feet per day (feet/d). In 2015,

withdrawals from the MRVA aquifer totaled 384.60 Mgal/d (Collier and Sargent, 2015) with the

majority of the usage for rice irrigation and industry. A potentiometric map published from the

Project Information Tracking for St. Helena Parish Site Class VI Permit Number: R06-LA-0001

Page 95 of 168

Revision Date: February 2023

Module A – Project Information Tracking

USGS in 2016 is presented in Figure 2-56. Within the sequestration site of St. Helena Parish, the

MRVA aquifer system is not present.

2.6.1.3 Chicot Aquifer System

The Chicot Aquifer System is the main regional aquifer system that provides the usable

groundwater for southwestern Louisiana. These Pleistocene-aged sands are predominately

comprised of unconsolidated to loosely consolidated gravels and coarse graded sands. These

gravel, sand, silt, and clay assemblages fine upwards and dip and thicken towards the Gulf of

Mexico, thin to the west (towards Texas), and thicken to the east (towards Mississippi) (Nyman

1984).

In southwestern Louisiana and southeastern Texas, the aquifer is subdivided into three sub-units

that are separated by confining layers (Sargent, 2011). The principal sand units within the aquifer

are the "200-foot" sand, "500-foot" sand, and "700-foot" sand. In the northeastern portion of the

Calcasieu Parish, these sands merge and the unit contain undifferentiated sands that are conducted

hydraulically. Freshwater in the lower subsections of the Chicot deteriorates in quality with depth

(LDEQ, 2003).

In Cameron Parish, the upper sand section contains freshwater underlain by saltwater (Nyman,

1984), except along the southeastern coast where no freshwater is present (Smoot, 1988). A

freshwater to saline interface is driven northwards from the coast by water production for public

supply, rice irrigation, and aquaculture (Sargent, 2011). Towards northwestern portions of Acadia

Parish, there is saltwater present near the base of the lower sand at depths ranging from 700 to 800

feet below ground (Nyman, 1989).

Recharge to the Chicot Aquifer System in Louisiana occurs where the Chicot outcrops in southern

Rapides and Vernon Parishes, and in northern Allen, Beauregard, and Evangeline Parishes. There

is also minimal recharge to the system via vertical leakage from the shallow overlying alluvial

deposits (Stuart et al, 1994).

A map of the potentiometric surface for the Chicot aquifer (Figure 2-57) shows the direction of

groundwater flow. Lovelace et al. (2004) indicated that the flow direction is towards major

Project Information Tracking for St. Helena Parish Site

Class VI Permit Number: R06-LA-0001

Page 96 of 168

Revision Date: February 2023

Module A – Project Information Tracking

pumping areas such as Lake Charles in Calcasieu Parish and the northern part of Acadia Parish

and south Evangeline Parish, where there is heavy pumping for industrial and irrigation uses.

The Chicot Aquifer System yields the highest amount of groundwater for the state of Louisiana

and is the primary source of water for Acadia, Calcasieu, Cameron, and Jefferson Davis Parishes.

As the aquifer nears the coast, the lower units become saline due to saltwater encroachment and

only the upper portions of the aquifer are used as a source of groundwater. Approximately 849.90

Mgal/d are produced from the entire aquifer based on data from the USGS Fact sheet for Calcasieu

Parish. The largest withdrawal is associated with rice irrigation and aquaculture (such as the

industry of crawfish harvesting) which are seasonal. The Chicot Aquifer system also provides the

largest supply for public water supply at 95.60 Mgal/day (Sargent, 2011), for the region and

supports large cities such as Lake Charles.

The Chicot Aquifer is not present in the St. Helena Parish, however the Chicot Equivalent Aquifer

system (e.g., Upland Terrace Aquifer) is present. The Chicot Equivalent is also comprised of

subdivided sand units within the shallow subsurface. The sand units provide freshwater to parishes

north of the Baton Rouge fault, and geologically similar those of the Chicot System of

southwestern Louisiana.

2.6.1.4 Southern Hills Aquifer System (SHAS)

The SHAS is the main regional aquifer system of interest for the Shell St. Helena Parish site and

is a designated Sole Source Aquifer by the USEPA. Regionally, this system extends from the Gulf

of Mexico in southeastern Louisiana and into southwestern Mississippi. The system is largely

composed of three main aquifers referred to as the Chicot Equivalent Aquifer, the Evangeline

Equivalent Aquifer, and the Jasper Equivalent Aquifer (White, 2017). Each of these aquifers

contains alternating layers of clays and sands, that dip and thicken south, towards the Gulf of

Mexico.

The SHAS is the primary source of freshwater water for Pointe Coupee, West and East Feliciana,

St. Helena, Tangipahoa, Washington, St. Tammany, Livingston, and West and East Baton Rouge

Parishes. As the aguifer nears the coast, the system becomes saline due to saltwater encroachment,

and the boundary of freshwater to saltwater coincides with the Baton Rouge Fault Zone (White,

Class VI Permit Number: R06-LA-0001

Page 97 of 168

Revision Date: February 2023

Module A – Project Information Tracking

2017). North of the fault is freshwater, and south of the fault is saltwater. There is some leakage

updip (north), through the Baton Rouge fault. Large groundwater withdrawals in the Baton Rouge

area have induced the northward encroachment of saltwater across the Baton Rouge Fault into

freshwater in some locations (Griffith, 2003).

Recharge to the system is from southwestern Mississippi and Louisiana Parishes that border the

Mississippi border (Pointe Coupee, West and East Feliciana, St. Helena, Tangipahoa, and

Washington Parishes). Approximately 293 Mgal/d are produced from the aquifer for the 10-parish

area (White, 2017). A potentiometric map from the USGS (1980) is provided for the combined

aquifers within the Pleistocene-aged formations in southern Louisiana (Figure 2-58). Main

groundwater withdrawal areas from the SHAS are Baton Rouge and New Orleans.

The Pleistocene-aged SHAS sands are predominately comprised of unconsolidated to loosely

consolidated gravels and coarse graded sands (Martin and Whiteman, 1985). These gravel, sand,

silt, and clay assemblages fine upwards, and dip and thicken towards the Gulf of Mexico, thin to

the west (towards Texas), and thicken to the east (towards Mississippi) (Aronow and Wesselman,

1971).

2.6.2 Local Hydrogeology

The Shell sequestration site is located within St. Helena Parish in southeastern Louisiana, which

is within the SHAS (Figure 2-59). As mentioned, the SHAS has been designated as a sole-source

aquifer for the region. The SHAS is comprised of three main aquifer sub-systems (White, 2017).

These are in ascending order:

• Chicot Equivalent Aquifer System

• Evangeline Equivalent Aquifer System

• Jasper Equivalent Aquifer System

Additionally, these sub-systems have multiple alternating sand aquifers and shale confining units.

These subsets are shown in Figure 2-60. Hydrostratigraphic units of local importance for the St.

Helena Parish site include in ascending order:

Project Information Tracking for St. Helena Parish Site

Class VI Permit Number: R06-LA-0001

Page 98 of 168

• Upland Terrace aquifer (400-Foot & 600-Foot sands)

• 800-Foot

• 1,000-Foot

• 1,200-Foot

• 1,500-Foot

• 1,700-Foot

• 2,000-Foot

• 2,400-Foot

• 2,800-Foot

For the St. Helena Parish, these aquifers contained groundwater ranging from freshwater (<1,000 mg/l) down to the USDW standard of 10,000 mg/l in isolated sands that dip to the south which are separated by alternating clay layers. Figures 2-61 and 2-62 are published cross sections illustrating the distribution of the aquifers located above the base of the USDW. The cross-sections illustrate how the individual sands are discontinuous and not laterally extensive (along strike and dip), suggesting no regional hydrological communication among the sands.

The Chicot Equivalent Aquifer System in St. Helena Parish comprises the Upland Terrace aquifer (and the shallowest) which contains the local 400-foot and 600-foot systems, with the following characteristics (White, 2016):

• A broad, discontinuous, near-surface aquifer

Present throughout parish

• Extends westward into East Feliciana Parish, eastward into Tangipahoa Parish, and northward into Mississippi

• Crops out along ridges and alongside stream valleys within the parish

• Generally, dips south to southwest at a rate of 10–30 feet per mile.

• Near the southern parish line, the Upland terrace aquifer correlates with the "400-foot" and "600-foot" sands of the Baton Rouge area.

• Sediments range in grain size from clay through silt and sand to gravel and can be over 300 feet thick. The aquifer is composed primarily of medium- to coarse-grained sand. Regionally, the proximity of the Upland terrace aquifer to the surface allows the aquifer to be recharged by infiltration of rainfall and to transmit some of this water to recharge deeper aquifers underlying the parish.

Project Information Tracking for St. Helena Parish Site Class VI Permit Number: R06-LA-0001 Based on 2009 data, the general groundwater flow direction was southward, with localized flow direction towards the Amite River and the Tickfaw River (See Figure 2-

63).

The Evangeline Equivalent Aquifer System in St. Helena Parish is comprised of the 800-foot, 1,000-Foot, 1,200-Foot, 1,500-Foot, and 1,700-Foot aquifers (White, 2017), with the following

characteristics:

• Aquifers are generally fine- to coarse-grained sand, with layers of clay usually separating

the individual sands. Note that some sands merge with overlying and underlying sands.

• Aquifers contain freshwater (Chloride concentration $\leq 250 \text{ mg/L}$)

• Groundwater flow direction is generally southwest towards Baton Rouge (See Figure 2-

64)

The Jasper Equivalent Aquifer System in St. Helena Parish is comprised of the 2,000-foot,

2,400-foot, and 2,800-foot aquifers (White, 2017), with the following characteristics:

• Aquifers are generally fine- to coarse-grained sand, with layers of clay usually separating

the individual sands. Note that some sands merge with overlying and underlying sands.

Aquifers generally contain freshwater (Chloride concentration ≤ 250 mg/L)

• In 2006, the general groundwater flow direction in the "2,800-foot" sand in St. Helena

Parish was to southwest from St. Helena Parish towards Baton Rouge water withdrawal

center (See Figure 2-65).

Within St. Helena Parish, there are no aquifers that are used as sources of groundwater below the

Jasper Equivalent System.

2.6.3 Determination of the Base of the Lowermost USDW

In order to determine the base of the Lowermost USDW, available USDW values were exported

from the SONRIS database within a radius of at least 10 miles from the proposed injection wells.

The exported values were then interpolated within the Petrel software across the area of interest.

Project Information Tracking for St. Helena Parish Site Class VI Permit Number: R06-LA-0001

Page 97 of 168

Revision Number: 1 Revision Date: February 2023

Module A – Project Information Tracking

To spot cross-check and validate the exported USDW values from the SONRIS database, the

following two approaches were used, which are based on the use of data from open-hole

geophysical well logs:

• Determination of USDW values was spot checked from shallow logs across the area of

interest using the Louisiana Department of Natural Resources' Injection and Mining

Division approach (identified below) on determining the base of the USDW using an

electric log. The spot-checked values were used to verify the SONRIS reported values.

The resistivity/spontaneous potential methodologies which are described in detail in

Appendix 2-C. The "Spontaneous Potential Method" derives the formation fluid

resistivity from the resistivity of the mud filtrate, and the magnitude of the deflection

of the spontaneous potential response (SP) of the formation (the electrical potential

produced by the interaction of the formation water, the drilling fluid, and the shale

content of the formations). The "Resistivity Method" determines formation fluid

resistivity from the resistivity of the formation (Rt) and the formation resistivity factor

(F), which is related to formation porosity and a cementation factor (Schlumberger,

1987).

Using the resistivity method, it was calculated that sands with a formation resistivity of greater

than 2.0 ohm-m would be considered USDWs. This site-specific calculation is in agreement with

LDNR guidance http://www.dnr.louisiana.gov/assets/OC/im div/uic workshop/2 USDW.pdf,

which indicates that the USDW should fall between:

• Ground surface to 1,000 feet: 3 ohms or greater is considered USDW

• 1,000 feet to 2,000 feet: 2 ½ ohms or greater is considered USDW

• 2,000 feet and deeper: 2 ohms or greater is considered USDW

Adopting a conservative approach, the base of the lowermost USDW across the evaluated logs

was placed at the base of the deepest sand with a deep resistivity at 2 ohms. The cross check of

the data showed good alignment.

Project Information Tracking for St. Helena Parish Site Class VI Permit Number: R06-LA-0001

Page 98 of 168

2.6.4 Base of the Lowermost USDW

The lowermost USDW is defined by the sudden decrease of resistivity at the base of the last sand

with an isolating shale below. For the St. Helena Parish injection site, the base of the lowermost

USDW is located at a depth ranging from 2,700 feet to 2,800 feet below ground (corresponds to

sands within the Jasper Equivalent Aquifer System) as shown in the USDW map (Figure 2-66).

The base of the USDW deepens southwards towards the Gulf of Mexico.

Within a 5 miles radius of the proposed injection well locations, the separation of the base USDW

to the top of the Frio Confining zone is around 2,000 feet. Multiple permeable aquifers and

aquitards ('containment shales') are present between the lowermost USDW and the top of Frio

Confining Zone. These additional sequences are comprised of Miocene-aged saline sands (buffer

zones) that would allow for additional pressure and fluid bleed-off prior to reaching any USDW if

a loss of containment event would occur. Collectively, these buffer saline intervals above the Frio

Confining Zone, have at least 2 additional laterally extensive shale confining units. These are fine-

grained Miocene deposits comprised of dominant shale with occasional sand/silt and referred to

as the Miocene Shale 1 (MS1) and Miocene Shale 2 (MS2), which are approximately 100 feet to

150 feet thick. These two shaly units have been correlated across the Shell St. Helena Parish site.

2.6.5 Water Well Data Sets

Water well data was gathered from the SONRIS database (https://www.sonris.com) and in person

at LDNR's records file room. A water well search was performed through SONRIS in November

2022. The in-person water well records search was conducted in February 2023. Water well

locations within 6 miles (purple boundary) of the two proposed injection well locations are shown

on Figure 2-67 (blue dots). A total of 647 wells were identified and their information (e.g., well

number identifier well depth, well status, use and aquifer description) are keyed to Table 2-9. Note

that well depths ranged from 12 feet to 2,155 feet below ground level, with the majority of wells

(84 percent) having a depth of less than 200 feet (Figure 2-68). Per 40 CFR 146.82(a)(2), a map

showing the area of review, the number or name, and location of all injection wells, producing

wells, abandoned wells, plugged wells or dry holes, deep stratigraphic boreholes, State- or EPA-

approved subsurface cleanup sites, surface bodies of water, springs, mines (surface and

Project Information Tracking for St. Helena Parish Site Class VI Permit Number: R06-LA-0001

Page 99 of 168

Revision Date: February 2023

Module A – Project Information Tracking

subsurface), quarries, water wells, other pertinent surface features including structures intended

for human occupancy, State, Tribal, and Territory boundaries, and roads is presented as Figure 2-

67A (Table 2-A presents a list of all elected officials representing St. Helena Parish). Table 2-9A

is a tabulation of water wells within the delineated Area of Review (pink outline on Figure 2-67A).

Out of the 647 wells, 575 wells are currently active. The remaining 72 wells are plugged and

abandoned; one well is status unknown. The well usage is displayed in Figure 2-69 showing the

breakdown by usage and current well status (Active vs Plugged).

Additionally, Figure 2-67 illustrates the surface water bodies within the local area. The Amite

River runs north-south from Mississippi through St. Helena Parish (to the west of the project site).

It is approximately 117 miles long, is the boundary between St. Helena, East Feliciana, and Baton

Rouge Parishes. It continues south through Baton Rouge and Livingston Parish and empties into

Lake Maurepas. There are also multiple branches and creeks, which are seasonally intermittent.

There are no quarries, springs, or subsurface mines within the local area (within the 5 miles radius

from injection well pads).

2.6.6 Local Water Usage

Note: there are no Class I injection well operations within St. Helena Parish.

In St. Helena Parish, with population of approximately 10,227 people (per 2020 census), the main source of drinking water comes from the Upland Terrace Aquifer/Chicot Equivalent Aquifer

System. Currently, there are fourteen public water systems in the parish that depend on

System. Currently, there are fourteen puone water systems in the parish that depend on

groundwater as a source of freshwater (White and Prakken, 2016). Within 6-miles of the injection

wells, there are 15 public supply wells that are used for the surrounding communities. Surface

water resources are limited to the Amite Subbasin, the Tickfaw Subbasin, and the Tangipahoa

Subbasin. Less than 0.01 million gallons per a day is supplied by surface water (White and

Prakken, 2016).

The USGS in cooperation with the Louisiana Department of Transportation and Development

(LaDOTD), produced a "Water Resources of St. Helena Parish" fact sheet with data up until 2010

(White and Prakken, 2016). The dominant water usage is supplied by groundwater (99 percent).

Class VI Permit Number: R06-LA-0001

Page 100 of 168

Revision Number: 1 Revision Date: February 2023

Module A – Project Information Tracking

The 2010 statistics showed that 1.05 Mgal/d were withdrawn from groundwater supply from the

Upland Terrance and Jasper Equivalent Aquifer systems. Total for these aquifers were: (1) Upland

Terrace provided 0.70 Mgal/d (~ 66%) and (2), Jasper Equivalent Aquifer System provided 0.35

Mgal/d (~33 %) for the Parish. (Table 2-10). Data for the table reflects the conditions of St. Helena

Parish in 2010 and is provided by the Water Resources of St. Helena Parish Fact Sheet.

In November 2022, a water well search was tabulated and keyed to Table 2-9 and has a total of

648 water wells (active and plugged). Out of the 648 water wells, 575 of these wells are active,

with over 500 wells used for domestic water supply. Thirty-two are used for public and public

commercial supply. The remaining active forty-three water wells are used for industrial or

irrigation purposes, including as oil/gas rig supply wells.

Out of the 575 active wells, the majority, 510 (88.7 percent) are completed within the shallow

Upland Terrace Aquifer (included are aquifer names 'shallow sands', '400-ft sand', '600-ft sand'

mentioned in SONRIS database) (Figure 2-70). Note that only nine of the active wells are

completed within the deeper Jasper Equivalent Aquifer systems (2,000-Foot, 2,400-Foot, and

2,800-Foot Sands). Additional observations that can be made about these nine wells are:

• 5 have a well use classification of public supply;

• 3 have a well use classification of industrial; and

• 1 have a well use classification of domestic.

2.6.7 Injection Depth Waiver

The Shell St. Helena Parish site's proposed injection zones are deeper than the base of lowermost

USDW (which ranges from 2,800 to 2,900 feet TVD) as shown in Figure 2-66. An injection depth

waiver is not required or requested for this project.

Project Information Tracking for St. Helena Parish Site Class VI Permit Number: R06-LA-0001

Page 101 of 168

Revision Date: February 2023

Module A – Project Information Tracking

2.7 GEOCHEMISTRY

The proposed data collection program (submitted in "Module D – Pre-Operational Testing") has

been designed and implemented to determine the mineralogy of the Injection, Containment and

Confining Zones, as well as characterize the interstitial fluids in each one of these zones.

Below the base of the lowermost USDW and throughout the entire interval of interest, all rock

formations contain saline brines. Open hole log analysis techniques, such as wireline spontaneous

potential and resistivity logging measurements and interpretation, can be used to define the vertical

distribution of salt concentrations. For more accuracy, fluid samples will be collected in-situ and

brought to the surface to be analyzed in the lab (as outlined in Module D). These different sources

of data will be integrated and compared to existing data available in the region through literature

papers and agency databases.

In this section, regional studies and commercially available data information from the CoreLab

RAPIDTM database have been used as proxies for site specific data.

2.7.1 Formation Brine Properties

Formation fluid samples will be collected from the appraisal wells from the targeted injection

zones. In lieu of site-specific data at this initial stage, analogues and formation information have

been reviewed for the Area of Interest and the targeted formations; Frio, Wilcox, and Lower

Tuscaloosa. Regional subsurface data is supported from literature to make evaluations for expected

properties of the native formation fluid.

2.7.1.1 Temperature

The formation temperature gradient can be estimated from temperature measurements previously

performed in different wellbores drilled at various depths in the area of the proposed injection

sites. However, both the borehole radius and the fluid invasion (mud filtrate) influence the

temperature measured in the borehole while it is expected that this influence attenuates over time

(Poulsen et al., 2012). Therefore, the borehole temperature is affected by the time duration from

the end of circulation and the time the logging tool takes to reach the drilled bottom of the well.

Project Information Tracking for St. Helena Parish Site Class VI Permit Number: R06-LA-0001

Page 102 of 168

Revision Date: February 2023

Module A – Project Information Tracking

As such, temperature measurements are likely to be cooler than actual temperatures, as the mud

column has not had sufficient time to reach temperature equilibrium.

In Figure 2-71, the bottomhole temperatures recorded in 96 offset wells are from published data

collected by Drumm and Nunn (2012). Due to insufficient data (none of the wells had multiple

logging passes at same interval) a Horner temperature correction was not applied. Instead, a

modified version of Kehle (1971) was used to correct for effects of the drilling mud. The data are

fitted by a linear trend which indicates an average temperature gradient of 1.6 °F/100 feet, using a

surface temperature of 66 °F.

The subsurface temperature for each injection interval can then be estimated from the temperature

gradient and the mean annual surface temperature. Using the available bottomhole temperature

(provided from log headers) data was then calibrated for a geothermal gradient (Figure 2-72). Note:

that all the bottomhole temperature (orange dots) are expected to be lower than actual formation

temperature due to the drilling mud cooling effect.

The projected reference temperature for each injection zone (using the above gradient) at formation

mid-point is:

1) 161 °F for Injection Zone No. 1 – Frio Formation (at a depth of 5,950 feet)

2) 217 °F for Injection Zone No. 2 – Wilcox Formation (at a depth of 9,450 feet)

3) 297 °F for Injection Zone No. 3 – Lower Tuscaloosa Formation (at a depth 14,440

feet)

2.7.1.2 *Salinity*

Different methods exist to determine the salinity of the formation water, but the most accurate one

is through the analysis of fluid samples collected in-situ. In lieu of site-specific data, a vertical

profile of formation fluid salinity properties can be estimated using open hole offset well analysis.

To estimate formation water salinity, one must first estimate formation water resistivity (R_w),

which can be calculated by using the Archie equation (Schlumberger, 1987). The underlying

assumption in the Archie equation is that the zone or permeable bed in which water resistivity is

Project Information Tracking for St. Helena Parish Site Class VI Permit Number: R06-LA-0001

Page 103 of 168

Revision Date: February 2023 Module A – Project Information Tracking

to be determined is 100% water saturated and must not contain any clay or shale (e.g., clean sand).

It is further assumed that the bed is sufficiently thick so that the deep investigation resistivity open

hole geophysical logging tool is not affected by shoulder beds or is affected by mud filtrate

invasion.

The general form of the water saturation equation is:

$$Swn_W^n = \frac{R_W}{(\Phi^m x R_t)}$$

where:

 S_w = water saturation of the uninvaded formation

n =saturation exponent, which varies from 1.8 to 4.0

Rw = formation water resistivity at formation temperature

 $\Phi = porosity$

m = cementation exponent, which varies from 1.7 to 3.0

R_t = true resistivity of the formation, corrected for invasion, borehole, thin bed, and other

environmental effects

In the case of a fully saturated formation, the resistivity (R_t in ohm-meters) is a function of 1)

resistivity of the formation water, 2) amount and type of fluid present, and 3) the pore structure

geometry. The rock matrix generally has zero conductivity (i.e., has infinitely high resistivity) and

therefore is not generally a factor in the resistivity log response. Induction geophysical logging

determines resistivity or R_t by inducing electrical current into the formation and measuring

conductivity (reciprocal of resistivity). The induction logging device investigates deeply into a

formation and is focused to minimize the influences of borehole effects, surrounding formations,

and invaded zone (Schlumberger, 1987).

Project Information Tracking for St. Helena Parish Site Class VI Permit Number: R06-LA-0001

Page 104 of 168

Revision Date: February 2023

Module A – Project Information Tracking

Therefore, the induction log is considered to measure the true resistivity of the formation

(Schlumberger, 1987). The conductivity measured on the induction log is the most accurate

resistivity measurement for resistivities under 2 ohm-meters.

Electrical conduction in sedimentary rocks almost always results from the transport of ions in the

pore-filled formation water and is affected by the amount and type of fluid present and pore

structure geometry (Schlumberger, 1987). In general, high-porosity sediments with open, well-

connected pores have lower resistivity and low-porosity sediments with sinuous and constricted

pore systems have higher resistivity.

Once R_w has been calculated for each injection zone, the R_w is converted to NaCl concentration

(salinity), using the formation temperature (Figure 2-73). The salinity in the proposed injection

intervals is summarized in Table 2-11.

2.7.1.3 *Viscosity*

Viscosity is a measure of a fluid's resistance to flow. For the purpose of constructing the initial

CO₂ sequestration model (without yet having the site-specific Pressure Volume and Temperature

(PVT) data available), formation brine viscosity at subsurface conditions is estimated using the

correlation of Kestin et al (1981), which was derived following experimental measurements of

dynamic and kinematic viscosity of NaCl solutions over a wide range of pressure, temperature,

and salinity conditions.

The formation brine viscosity in the proposed injection intervals can be summarized as:

1) 0.54 cP for Injection Zone No. 1 – Frio Formation (at a depth of 5,950 feet)

2) 0.36 cP for Injection Zone No. 2 – Wilcox Formation (at a depth of 9,450 feet)

3) 0.28 cP for Injection Zone No. 3 – Lower Tuscaloosa Formation (at a depth of

14,440 feet)

As expected, viscosity decreases with depth since the formation gets hotter. However, this

tendency to decrease may be impacted in intervals exhibiting higher salinities. In these zones, the

Project Information Tracking for St. Helena Parish Site

Class VI Permit Number: R06-LA-0001

Page 105 of 168

Revision Date: February 2023 Module A – Project Information Tracking

formation water gets thicker and more viscous, having an inverse effect. These initial viscosity values are based upon no site-specific data and assumptions made for the site-specific salinity and temperature. The viscosity of the formation fluids for the injectors will be evaluated at time of analysis. The site-specific data on the formation fluid will be used to refine the static and dynamic simulation model, as well as to refine the geochemical modeling.

2.7.2 Compatibility of the CO₂ with Subsurface Fluids and Minerals

Interactions between carbon dioxide and the formation brine and matrix materials in the subsurface can be categorized as those that occur during the period of injection or immediately following injection, and those that occur over the long term of carbon dioxide storage. While interactions occurring during injection and in the early phase of carbon dioxide sequestration can be directly studied and evaluated, the longer-term interactions over tens to hundreds of years can only be evaluated through modeling and other forms of prediction. In general, geologic materials are not overly reactive, or very slowly reactive, with acids such as carbonic acid. Carbonic acid (H₂CO₃) is a weak acid that dissociates into a proton (H⁺ cation) and a bicarbonate ion (HCO₃⁻ anion).

Because the permeability of the confining and containment zones (shales) is expected to be several orders of magnitude lower than the permeability of the injection zones (sands), in a practical sense, the carbon dioxide sequestered in the Injection Zones has a much higher potential to contact and react with the rocks and fluids in these intervals. Additionally, because of the low permeability of the aquiclude shales, only reactions near or at the shale/sand interface are likely to occur. Injection operations elevate pressure within the injection interval both during injection and for a period of time afterwards (during pressure recovery). This elevated pressure provides the driving force for vertical permeation of injected fluids and formation brines into the overlying aquitards. Buoyance of the sequestered carbon dioxide also provides an additive driving force. Permeation is the greatest immediately adjacent to the wellbore where the pressure buildup is large and involves primarily the injected fluids. Further from the injection well the vertical permeation drops off significantly and may only affect either the original formation brine or the injected fluids, depending on the location of the carbon dioxide plume.

Occasionally, fluids may move into the base of the overlying aquitard from the injection interval below and compress some of the native brines immediately above it. This compression raises the pressure within the lower portion of the aquitard and expands the pores immediately above the interface. Aquitard materials, such as clay/shales, are known to exhibit significant pore expansion (Neuzil, 1986). The combined effects of native brine compression and aquitard pore expansion provides the necessary space to store the entering fluids. This process does not occur uniformly throughout the thickness of the aquitard. It is rather confined to a narrow region very close to the lower aquitard boundary. Throughout the remainder of the aquitard, there is virtually no indication that any changes have taken place. This narrow region near the base of the aquitard is referred to as the "compression boundary layer." It contains new fluids that have entered since the beginning of the injection, as well as original formation brines that have been pushed upward into the expanded pores and compressed by the entering fluids. The vast majority of the fluids within this

With continued injection, the compression boundary layer increases in thickness and may eventually encompass the entire aquitard thickness. Native fluids originally present at the top of the aquitard may then begin seeping out into the next overlying permeable layer. The time for this to occur is proportional to the square of the aquitard thickness and inversely proportional to the "hydraulic diffusivity" of the aquitard material (Bredehoeft and Pinder, 1970). Because the hydraulic diffusivity of many aquitard materials (such as shales) is very low (Neuzil, 1986; Neuman and Witherspoon, 1969a and 1969b; and Hantush, 1964), the time is in the order of decades (Chen and Herrera, 1982) which is comparable to the operational lifetime of many underground sequestration facilities. Thus, compressive storage effects in the aquitard layers are important when modeling injection-induced permeation into an aquitard during injection and shortly after operation of the waste facility. When injection is discontinued, some of the waste may seep back into the injection interval from the aquitard. This reverse permeation phenomenon always occurs when the pressure in the injection interval decreases.

The vertical permeation distance reaches an absolute maximum either during injection (typically at the end of the injection period) or after an infinite time has passed since injection operations have stopped. The time necessary to attain the maximum distance depends on the compressive

layer are typically the original formation brines.

Revision Date: February 2023 Module A – Project Information Tracking

storage properties of the aquitard. For aquitards with high compressive storage capabilities, the

maximum permeation distance occurs at the end of the injection period. For aquitards with low

storage capabilities, the maximum will occur at an infinite time.

Long after injection operations have stopped, the driving force for vertical permeation usually

dissipates, along with the compressive storage of fluids in the aquitard. The pressure-driven rate

of fluid movement into the overlying aguitard decreases to zero, leaving only the residual buoyance

force. Before the carbonic acid from the sequestered carbon dioxide can react with the clay/shales

of the aquitard, it must first migrate from the injection interval strata into the base of the overlying

aquitard. During the movement within the injection interval, the acid can be partially or totally

neutralized by the carbonates, clays, and other silicates (e. g., feldspars) in the formation. This

neutralization halts any further dissolution of carbonate minerals, so that the fraction of dissolved

carbonates (relative to pre-injection carbonate mineral amount) is extremely small.

The modeling of strong acids injected into Class I wells presented by DuPont indicates that:

• During injection, injected acids react with at most 2 inches per year of the shale in the

overlying arresting aquiclude layer. This rate drops to less than 0.1 inch per year if the

waste is injected at least five feet below the base of the arresting shale.

After injection ceases, injected acids react with at most an additional two feet of the

overlying arresting aquiclude layer for all eternity.

• In the unlikely event that the overlying arresting aquiclude shale layer contains a vertical

streak of highly reactive material, such as calcite, the acid could at most migrate 26 inches

into this streak: 16 inches during a 60-year period of injection and an additional 10 inches

for all eternity post-closure.

• Permeation through the arresting shale due to pressure buildup during injection is more

important than shale-acid reactions in determining how far injected fluids can migrate into

the overlying arresting aquiclude shale.

Therefore, interactions of the sequestered carbon dioxide and the formation fluids and materials

are the most critical within the injection interval.

Project Information Tracking for St. Helena Parish Site Class VI Permit Number: R06-LA-0001

Page 108 of 168

Revision Number: 1 Revision Date: February 2023

Module A – Project Information Tracking

At the pressure and temperature conditions typical of carbon sequestration projects, carbon dioxide is soluble to a limited degree. The dissolved carbon dioxide transforms the native formation brine into a carbonic acid, such as:

$$CO_2$$
 (aqueous phase) + $H_2O = H^+ + HCO_3^-$ (aqueous phase)

The carbonic acid can react with and dissolve minerals in the matrix, which acts to neutralize the lower pH. The sequestration process includes both short- and long-term geochemical impacts. Short-term CO₂-water-rock interactions can affect injection over the operational time period (tens of years), such as dry-out and salt precipitation in the near-wellbore area from formation fluid evaporation. In addition, at first contact with CO₂ (i.e., at the front of the CO₂ plume), carbonic acid is formed via CO₂ dissolution in the native formation brine. This triggers dissolution of carbonate minerals. This is not a reason for concern, because in the same process the carbonic acid is quickly neutralized, meaning that a new equilibrium is rapidly established between the elevated CO₂ concentration and the carbonate minerals. The new equilibrium is already established after only a small amount of carbonate dissolution, so that porosity and permeability changes are negligible. Behind the CO₂ plume front (where the formation brine is already neutralized) no further carbonate dissolution takes place. Long-term impacts and reactions can affect permanence of trapping of the carbon dioxide via mineral trapping. The long-term geochemical processes consist of a combination of slow dissolution and precipitation reactions. Significant long-term dissolution without simultaneous co-precipitation is impossible because it would lead to unrealistic supersaturation levels in the formation brine. In most systems, precipitation dominates over dissolution resulting in a gradual decrease of porosity and permeability, and a gradual mineral trapping of CO₂.

The extent of secondary trapping mechanisms within the injection interval is highly site-specific and depends on the geology, structure, and hydrology of each reservoir. For instance, increasing pore fluid salinity decreases carbon dioxide solubility (Gunter et al., 1993). The purity of the injected carbon dioxide also affects the storage capacity of the reservoir (Talman, 2015). In such sedimentary settings, the injected carbon dioxide may remain mobile for centuries and trapping relies primarily on the impermeability of the overlying caprock and sealing faults. Large and extensive saline aquifers are essentially hydrodynamic traps, where the injected carbon dioxide is

Project Information Tracking for St. Helena Parish Site Class VI Permit Number: R06-LA-0001

Revision Date: February 2023

Module A – Project Information Tracking

expected to move rapidly through the pore space, interacting with a larger volume of the reservoir.

This interaction increases the extent of all secondary mechanisms (National Academies of

Sciences Engineering Medicine, 2019).

The carbonic acid can readily react with calcium carbonate and hydroxide minerals, which also

reduces the acidity of the formation brine. In addition to the precipitation of carbonates, a host of

other fluid-rock reactions can take place within the injection zone. Silicate minerals in arkoses and

shales display textures in experiments indicating that these minerals are reacting with carbonic

acid (Kaszuba et al., 2005). Acid reacts with feldspars in a manner similar to its reaction with

clays. However, the overall rate is slower with feldspars than with clays because in typical rock

matrix, the feldspar is present as large particles, so the surface area available for feldspar to react

is much smaller than for clay particles.

With silica, the silica can be solubilized by an acid as follows:

$$SiO_2 + H_2O + H^+ \rightarrow Si(OH)^{3+}$$

The rate of dissolution of silica is generally quite slow but becomes faster as the hydroxyl

concentration increases. Note also that the rate is 10,000 times faster at a pH of 8.5 than at a pH of

3 (Iler, 1979).

Mineral compatibility from CO₂-brine-rock interaction experiments conducted in support of basin

characterization projects under the Department of Energy suggests that feldspars (plagioclase and

albite-K-spar system) are destabilized by the drop in pH associated with carbon dioxide dissolution

in the formation brine water, favoring the formation of minerals such as kaolinite, muscovite, and

paragonite (LBNL, 2014).

The principal effect of acid on clays is to leach metal ions from the clay lattice sites, leaving behind

a silica framework. In experiments which monitored the x-ray diffraction pattern of the clays as

the metal ions were leached out by acid, the pattern remained very similar to the original clay x-

ray pattern even when 50% of the aluminum had been extracted from the mineral (Mathers et al.,

1955). There are two types of sites in clays where metal ions can be located. The largest fraction

of metal ions is located within the octahedral sites of the clay structure. These are part of the

Project Information Tracking for St. Helena Parish Site Class VI Permit Number: R06-LA-0001

Page 110 of 168

Revision Date: February 2023

Module A – Project Information Tracking

alumina sheet in the mineral structure and are coordinated to six oxygens. A smaller fraction of

the metal ions occupies the tetrahedral sites. These are part of the silica sheet and are coordinated

to four oxygens. Octahedrally coordinated aluminum is leached out at a faster rate than

tetrahedrally coordinated aluminum (Turner, 1964).

At the Frio Brine Pilot Test (in the Texas Gulf Coast Region), following carbon dioxide

breakthrough, samples from the monitoring well showed sharp drops in pH, pronounced increases

in alkalinity and iron content, and significant shifts in the isotopic compositions of formation

waters, dissolved inorganic carbon, and methane (Kharaka et al., 2006). Geochemical modeling of

the Frio Brine Pilot indicates that brine pH would have dropped lower but was buffered by

dissolution of carbonate and iron oxyhydroxides (Kharaka et al., 2006). The dissolution of

minerals, especially iron oxyhydroxides and leaching of clays could mobilize metals and organic

compounds in formations containing residual hydrocarbons or other organics (Kharaka et al.,

2006).

The experimental and modeling analyses suggest that mineral precipitation and dissolution

reactions (within the target formation) are not expected to lead to significant changes to the

underground hydrologic system over time frames (approximately 30 years) typically relevant for

injection operations.

2.7.3 Site Specific Geochemical Modeling

Injection of CO₂ into a reservoir leads to dissolution and dissociation of CO₂ in the formation water

(FW), causing the pH to decline and changing the geochemical equilibrium. As a result, dissolution

and precipitation of minerals will take place until a new geochemical equilibrium is reached. This

process may take hundreds of years due to the slow rate at which some minerals react. Mineral

reactions, speciation reactions, and gas dissolution reactions are quantified and coded in public

geochemical databases (e.g., Thermoddem developed by BRGM), which can be used by the

simulation code PHREEQC to compute geochemical equilibria and kinetic rates. PHREEQ is a C

and C++ model software designed to solve various aqueous calculations and is available as open-

source code through the USGS.

Project Information Tracking for St. Helena Parish Site

Class VI Permit Number: R06-LA-0001

Page 111 of 168

Revision Date: February 2023

Module A – Project Information Tracking

Quantification of the reactions includes the dependency of the temperature, pressure, and

composition of the FW. Since 2008, PHREEQC has been coupled to the Shell reservoir simulator

MoReS (proprietary software), to enable simulation of gas and fluid flow together with

geochemical reactions, also called reactive transport modelling (RTM). In this screening study,

MoReS-PHREEQC and Thermoddem (adapted) are used to carry out batch geochemical

modelling (0D, no transport) to quantify the impact of CO₂ injection for the St. Helena Parish site.

Shell carried out a geochemical screening study for the Shell St. Helena Parish site, to predict the

impact of CO₂ storage on the mineralogy, formation water (FW), and potential generation of H₂S.

Three aquifer formations were studied, Lower Tuscaloosa, Wilcox, and Frio, which have varying

depth, pressure, temperature, and mineralogy.

The geologic matrix and initial conditions data for the three targeted reservoirs using has been

provided through analogue and offset geologic data basis to provide the mineralogy, temperature,

and pressures conditions outlined the prior sections. Porosity was set to 12 percent for all

reservoirs. The composition of the formation fluids was only available for the Frio Formation.

Data was provided from samples of the Lower Miocene (depths ~6,000 - 8,000 feet) from the

Good Hope Field in St. Charles Parish.

Using the mineral and formation fluid data, Shell performed a reconciliation using OLI Studio and

PHREEQC, hence defining and verifying a geochemical equilibrium state for all three aquifers.

MoReS-PHREEQC was then used to compute the impact of adding pure CO₂ gas (i.e., without

contaminants) on the geochemical equilibrium in one single grid cell. The latter is also called batch

modelling and excludes transport effects.

The results show that CO₂ dissolves and dissociates in the formation water, causing the pH to

decline. As a result, mineral dissolution and precipitation reactions occur. In general, the

dissolution of chlorite, calcite, and illite is encountered, as well as precipitation of dolomite,

kaolinite, siderite, and quartz. As minerals have different densities and react in various quantities,

the porosity in the simulation decreased for all target reservoirs (Table 2-12).

In the two deepest formations, only very low amounts of H₂S in the gas phase are predicted by the

model, up to 0.1 ppm in Lower Tuscaloosa and 0.02 ppm for Wilcox. Based on these relatively

Page 112 of 168

Revision Date: February 2023

Module A – Project Information Tracking

small numbers, a serious impact of H₂S generation due to CO₂ injection is considered to be low in

these formations.

Results for Frio are uncertain as the simulations encountered numerical instabilities and depend

on how the reaction of pyrite is treated in the model. A maximum of 14 ppm H₂S in the gas phase

is computed during certain periods in the simulation, however we consider this a low reliability

result due to the numerical instabilities. A much lower concentration (even below that predicted

for the Wilcox), would be more in line with theoretical expectations (due to lower reservoir

temperatures than in Wilcox), and in fact a very low concentration of 0.0001 ppm is observed

during other periods in the Frio simulation. Nevertheless, due to the numerical instabilities we also

cannot be 100% certain of this very low concentration prediction at this stage.

Further evaluation of the geochemical database, especially related to redox reactions and H₂S, is

required to reduce model prediction uncertainties. It is recommended to carry out a follow-up study

once more accurate data (mineralogical and formation fluid compositions) are obtained from the

data acquisition of the injection wells. Such follow-up work should include a 1D and/or 2D

modelling study to assess reactive transport effects of CO₂, uncertainty quantification (impact of

physiochemical model input parameter uncertainties like mineral dissolution/precipitation kinetic

rates), as well as the impact of contaminants in the reaction stream. The future geochemical

modeling will also evaluate potential clogging of the near-well area, hence injectivity loss, due to

water evaporation (dry-out) in the injected CO₂ and salt precipitation. Salt accumulation can be

enhanced as a result of capillary backflow of brine from the aquifer to the dry-out area.

The sampling program for the injectors has been designed to include fundamental testing to

evaluate key geochemical parameters. Secondary trapping mechanisms include solubility trapping

by dissolution of the injected carbon dioxide into the in-situ formation brine, residual gas trapping

by capillary forces, and mineralization by chemical interactions between the injected carbon

dioxide, formation fluids, and the rock matrix.

The sampling program that will be implemented during well construction has been designed to

include sampling of relevant formation fluids and formation materials so that tests on both

injection interval and caprock can be made (see the data acquisition plan in Module D - Pre-

Project Information Tracking for St. Helena Parish Site

Page 113 of 168

Operational Testing and Logging). The interactions between carbon dioxide, site-specific

formation brines, and formation minerals (collected via core and cuttings) will be analyzed using

geochemical and reactive transport models (as discussed above), to refine the current simulation

model and provide a site-specific analysis of changes in formation water chemistry, mineral

precipitation and dissolution reactions, and any potential resulting effects on formation porosity

and permeability.

2.8 SITE SUITABILITY SUMMARY

The Shell St. Helena Parish site is suitable for injection of CO₂ as per 40 CFR 146.83 standards

for the Confining and Injection Zones. The key factors driving site suitability are summarized:

• There is a minimum of artificial penetrations (legacy wells) in the leasehold area relative

to the rest of Louisiana, reducing associated CO₂ containment risk.

• Sink depths are at 3,500-14,000 feet TVDSS, which is 1) favourable for supercritical CO₂

injection which increases site efficiency (injecting denser supercritical CO₂ means more

can be stored in equivalent pore space) and 2) above the regional geopressured zone which

reduces storage capacity as the reservoir is already near the fracture pressure threshold.

• The lease hold site is relatively structurally quiescent with minor or sub seismic faulting in

the area.

• Structural dips are approximately 1.5 degrees which is low for onshore Louisiana and

generally favorable for migration assisted CCS in a saline aquifer.

• There are three potential stacked injection zones Frio (primary), Wilcox (tertiary), Lower

Tuscaloosa (secondary) in the storage complex thus improving site capacity and

efficiency.

• The proposed storage complex at the Shell St. Helena Parish project site is capped by a

thick (average ~370 ft TVT), regionally correlative primary confining zone above the

Frio Injection Zone (Anahuac 'Heterostegina' limestones and shales and Lower Miocene

shale) and contains thick secondary containment zones above the deeper injection zones

Project Information Tracking for St. Helena Parish Site Class VI Permit Number: R06-LA-0001

Page 114 of 168

Revision Date: February 2023

Module A – Project Information Tracking

(marine origin Midway Shale above the Wilcox Injection Zone and marine origin Eagle

Ford/Tuscaloosa Marine shale above the Lower Tuscaloosa Injection Zone).

The Frio, Wilcox, and Lower Tuscaloosa Injection Zones are siliciclastic dominated packages. The

heterogeneity and distribution of the sand and shale facies, as well as correlative intra-reservoir

baffles and potential barriers, provide substantial local immobilization and containment of the

proposed volumes of CO₂ to be injected. Along with the local trapping and immobilization of CO₂

by small and larger scale structural heterogeneity, substantial volumes of CO₂ can be trapped in

the pore spaces by capillary forces and dissolved in the *in-situ* brine of the leasehold injection

zones.

The low structural dips at the site result in lower rates of lateral migration. Any mobile CO₂ that

moves to the top of the injection zone and along the base of the confining zone will travel more

slowly, and thus allow for more time to be dissolved in the brine, trapped in the capillary pore

spaces, or mineralized and thus reduce containment risk.

The minerology of the storage complex (geologic matrix) and formation water is not reactive with

the injected CO₂ stream, which will be confirmed with data collected at the site during site

appraisal. Injection and monitoring well materials that will be subject to the injected CO₂ stream

have been chosen for their corrosion resistance and the well(s) design chosen to further reduce

containment risk.

Injection wells have been sited at specified locations to maximum the offset to legacy wells and

minor normal fault systems primarily interpretable in the deepest interval of interest (Lower

Tuscaloosa) outside the AoR, thus, minimizing the risk of loss of containment. The rates of

injection of CO₂ have been optimized to reduce risk of loss of containment of the mobile CO₂ as

well as loss of containment of the *in-situ* injection zone formation fluids via pressure building up

above defined threshold values.

The primary confining zone is a thick, low net to gross, heterolithic section of primarily carbonates

and shale. A connected open fracture system in the carbonates, if present, could be a potential

concern within the confining zone. This will be addressed by information gathered from whole

Project Information Tracking for St. Helena Parish Site Class VI Permit Number: R06-LA-0001

Page 115 of 168

Revision Number: 1 Revision Date: February 2023 Module A – Project Information Tracking

core, borehole imaging and dynamic testing of the confining zone during appraisal of the leasehold site.

is limited by potential pressure constraints associated with legacy artificial penetrations and known faults in the general area north and south of the Shell St. Helena Parish site. Site appraisal and monitoring activities are designed to better understand reservoir quality and hydraulic connectivity which drive the pressure behavior and associated site risks.

3.0 AOR AND CORRECTIVE ACTION PLAN

Shell has uploaded the "AOR and Corrective Action Plan" technical report [40 CFR 146.82(a) and 146.84(b)] via the EPA GSDT portal. The report contains the details of the computational modeling [40 CFR 146.84(c)], which includes pressure and plume maps at 5-year intervals for the simulated 25-year operation period. The report also includes a tabulation of all wells within the AoR [per 40 CFR 146.82(a)(4)]. A thorough evaluation of each of these wells, using well records, scout tickets, and logs was performed to determine if a corrective action plan is warranted. A reevaluation schedule for AoR delineation is set at 5-year intervals during injection operations.

This plan will be updated as the project is developed to be consistent with the data derived from the appraisal wells, injection wells, and collected through the operational and testing of the carbon sequestration project.

AoR and Corrective Action GSDT Submissions

GSDT Module: AoR and Corrective Action

Tab(*s*): All applicable tabs

Please use the checkbox(es) to verify the following information was submitted to the GSDT:

☑ Tabulation of all wells within AoR that penetrate confining zone [40 CFR 146.82(a)(4)]

△ AoR and Corrective Action Plan [40 CFR 146.82(a)(13) and 146.84(b)]

☑ Computational modeling details [40 CFR 146.84(c)]

4.0 FINANCIAL RESPONSIBILITY

Shell has submitted a Financial Responsibility Demonstration (FRD) in accordance with 40 CFR

146.82(a) and 146.85. The submittal covers activities identified in the corrective action plan,

injection plugging plan, post-injection site care and closure, and the emergency and remedial

response plane. Additionally, it covers the monitoring and reporting activities during injection and

closure operations.

Cost estimates for the activities were provided by independent third-party contractors and /or by

knowledge of industry standards and practices per 40 CFR 146.85(c). The cost estimates include

project management, administrative costs, overhead, and contingency and are presented in Table

4-1.

Cost estimates with supporting documentation have been uploaded on the "Cost Estimates" Tab

in Module C of the GSDT Tool for this initial submittal of a permit application. Actual values may

change due to inflation of costs or additional changes to the final project. If the cost estimate

changes, Shell will adjust the value of the FRD, and it will be submitted to the authorized

regulatory body for review and approval on an "as needed" basis. Detailed information and

supporting documents have been submitted through the GSDT through "Module C – Financial

Responsibility Demonstration."

Financial Responsibility GSDT Submissions

GSDT Module: Financial Responsibility Demonstration

Tab(s): Cost Estimate tab and all applicable financial instrument tabs

Please use the checkbox(es) to verify the following information was submitted to the GSDT:

☑ Demonstration of financial responsibility [40 CFR 146.82(a)(14) and 146.85]

Revision Date: February 2023

Module A – Project Information Tracking

5.0 INJECTION WELL CONSTRUCTION

Shell plans to operate a sequestration storage project in St. Helena Parish and is requesting a permit

for two Class VI CO₂ Sequestration wells (Injection Wells Soterra IF 1-1 and Soterra IT 2-1) that

will be completed for injection into the Frio and Lower Tuscaloosa Injection Intervals. The Soterra

IF 1-1 will be plugged back to approximately 6,755 feet and completed for injection into the Frio

reservoir. Both well(s) will be constructed in accordance with 40 CFR 146.86(b) standards for

Class VI Injection Wells. Note, unless specified, all depths in this section are relative to True

Measured depth (TMD).

The following sections address the procedures to drill, sample, complete, operate, and test the

proposed wells, as well as specifications of the construction materials. Additionally, procedures

for plugging and abandoning the wells are also provided. Specification of maximum instantaneous

rate of injection; average rate of injection; and the total monthly and annual volumes requested are

also included. All construction data meets the requirements for Class VI well in under 40 CFR

146.82(a)(9), (11), and (12).

All phases of well construction will be supervised by qualified individuals acting under the

responsible charge of a licensed professional engineer who is knowledgeable and experienced in

practical drilling engineering and who is familiar with the special conditions and requirements of

Class VI CO₂ injection well construction.

5.1 PROPOSED STIMULATION PROGRAM [40 CFR 146.82(A)(9)]

A stimulation plan has been developed for the Soterra IF 1-1 and Soterra IT 2-1, which will be

initially employed after the drilling and completion of the injection wells. The stimulation program

will consist of an acidization and wellbore flowback (utilizing coiled tubing) to remove formation

skin damage due to invasion of solids during drilling and any perforation damage. The acid

treatment will consist of the following acids, with actual volumes to be determined prior to the

time of placement:

Project Information Tracking for St. Helena Parish Site Class VI Permit Number: R06-LA-0001

Page 119 of 168

Revision Date: February 2023 Module A – Project Information Tracking

• 15% Hydrochloric Acid (HCl)

• 7.5% HCl + 1.5% Hydrofluoric (HF) Acid

Best practices for recommended volumes for acid stimulations generally range from 50 to 100

gallons per foot, depending on the severity of near wellbore formation damage. Chemicals will be

added to the acid blends to limit clay swelling, reduce emulsions, and inhibit reaction to the

completion equipment and tubulars. The type and quantity of these chemicals will be determined

based on formation characteristics determined from core and wireline log evaluation. All

stimulations fluids that could be used will verify that there is no adverse reaction with confinement

of the reservoir. Additional acids and diverter fluids may be considered at the time of placement.

The acid fluids will be displaced from the wellbore using non-hazardous treating water or brine.

Additional stimulation treatment may be necessary if the injection performance of the well is

unacceptable. Stimulation procedures will be submitted for approval prior to any additional

stimulation work.

5.2 CONSTRUCTION DESIGN AND PROCEDURES [40 CFR 146.82(A)(12)]

The proposed Completion Schematics for the Injection Wells are included as Figure 5-1 and 5-2.

The schematic includes well casing specifications and setting depths, cementing data, and

completion details. The proposed Wellhead Schematics for each of the wells is included as Figure

5-3.

5.2.1 Casing String Details

Casing specifications for the proposed Injection Wells are detailed in Tables 5-1 and 5-2

respectively. Stress calculations for all well casing have been provided in Appendix D. All

components of the surface and protection casings will be manufactured to API standards and are

designed for the proposed life of the well, based on the materials of construction and the

environment of use. The casing strings will consist of both carbon steel (non-CO₂ contact) and

martensitic stainless steel (25CR for CO₂ contact usage) to ensure the longevity of the wellbore.

Carbon steel for surface and intermediate casing and a mixed string of carbon steel and 25CR steel

Project Information Tracking for St. Helena Parish Site Class VI Permit Number: R06-LA-0001

Page 120 of 168

Revision Date: February 2023 Module A – Project Information Tracking

for the completion casing. Additionally, all casing strings will be fully cemented to surface, which

will provide additional isolation of the casing string from external formation fluids along the

borehole path.

Prior to running the casing in the hole, each string will be visually inspected and drifted to ensure

that no defects are present. The connections will be cleaned, and the manufacturer's recommended

thread compound will be applied to the pin of each connection before make-up.

5.2.2 Centralizers

The number of centralizers needed depends upon pipe weight, mud weight, hole deviation and

hole condition. Each casing string will be centralized per Shell policy, achieving at least 70%

standoff throughout the string.

Casing strings will have a centralizer attached to the casing at intervals along the entire well path.

Centralizers will be placed to maximize the casing standoff from the well bore to enhance the

cementing of the wells. The centralizers will be placed as follows:

• 1 centralizer per joint for the bottom 500 feet of each casing string

• 1 centralizer per three joints from 500 feet above the shoe to surface

Actual placement of centralizers will be determined once the drilling of each well section is

completed, and logs have been reviewed. Additional centralizers may be used as needed to provide

the highest quality cementing job possible.

5.2.3 Annular Fluid

The annular fluid type will be designed for these wells with an annulus monitoring and

pressurization system will maintain the annulus at least 100 psi pressure greater than the injection

tubing pressure. Sodium chloride brine with inhibitors or base oil are both under consideration.

Project Information Tracking for St. Helena Parish Site Class VI Permit Number: R06-LA-0001

Page 121 of 168

Revision Date: February 2023

Module A – Project Information Tracking

5.2.4 Cementing Details

Shell has designed the cement program (Table 5-3) using cement types and additives which will

be compatible with the CO₂ stream and formation fluids over the lifetime of the project [per 40

CFR 146.86 (b)(5)]. All casing strings will be cemented to surface, and a cementing job summary

indicating returns at surface will be provided to the UIC Program Director prior to authorization

to inject [LAC §3617 (A)(2)(d)].

Expected downhole temperature is 168 °F at 6,400 feet TMD for the Soterra IF 1-1 and expected

downhole temperature is 294 °F at 14,300 feet TMD which is not considered detrimental to the

cement. The cement will increase in hardness over time and reach a value close to its maximum

compressive strength soon after setting.

5.2.5 Tubing and Packer Details

Tubing specifications for the proposed Injection Wells are detailed in Table 5-4 and 5-5,

respectively. Stress calculations for all well casing have been included in Appendix D. The well(s)

will be completed tubing design deemed sufficient for resistance to corrosion. The tubing will

extend from the surface to the injection packer, with a slip-and-seal assembly installed to provide

engagement with the surface wellhead.

The proposed injection packer(s) will be set in the completion casing in the Frio Injection Zone

for Soterra IF 1-1 at an approximate depth of 4,730 feet TMD, and in the Lower Tuscaloosa

Injection Zone for the Soterra IT 2-1, at a depth of approximately 13,500 feet. The proposed packer

will be designed such that all the parts that will be in contact with the injection stream ("wetted

parts") will have the same corrosion resistance capabilities as are deemed necessary for the tubing.

The packer assembly will include a Polished Bore Receptacle (PBR) of sufficient length to account

for potential tubing movement during well operation.

Prior to running the tubing in the hole, each string will be visually inspected and drifted to ensure

that no defects are present. The connections will be cleaned, and the manufacturer's recommended

thread compound will be applied to the pin of each connection before make-up.

Project Information Tracking for St. Helena Parish Site Class VI Permit Number: R06-LA-0001

Page 122 of 168

Revision Date: February 2023 Module A – Project Information Tracking

5.3 PROPOSED DRILLING PROGRAM

Normal plant and area safety rules and regulations will be in force during installation of the wells.

Prior to well construction, the ground surface will be graded to level. An all-weather location will

be installed, with additional reinforcement placed under the rig substructure area. The rig

contractor will provide power for the rig and associated equipment. The construction site will be

barricaded to prevent entry by unauthorized personnel. Normal handling of the wellbore solids and

fluids is anticipated during the drilling phases of the work and completion phases of the work.

All phases of well construction will be supervised by qualified individuals acting under the

responsible charge of a licensed professional engineer who is knowledgeable and experienced in

practical drilling engineering and who is familiar with the special conditions and requirements of

Class VI CO₂ injection well construction.

5.3.1 Soterra IF 1-1 Injection Well

The drilling program for the Soterra IF 1-1 (Frio Injector) at the St. Helena Parish site contains a

conductor hole, surface hole, intermediate hole, and injection hole. All depths in the outlined

procedure are referenced to the drill floor elevation (DFE), which is estimated at 32.5 feet above

ground level. The ground level elevation (GLE) is 166.1 feet above MSL for the Soterra IF 1-1

well. All depths are specified as TMD from DFE unless otherwise indicated.

5.3.1.1 Proposed Drilling Procedure

The following is the drilling and completion procedure for drilling the Soterra IF 1-1:

Surface Hole

1. Spud well

2. Drill 17-1/2" hole to 2,900 ft TMD

3. CBU and POOH

4. Run electric line logs per program (per LAC §3617.B.1.b.i and §3617.B.3)

5. R/U and run 13-3/8" casing to ~2,900 ft TMD, refer to Table 5.1 – Well Casing

Specifications for a detailed description of the casing.

Project Information Tracking for St. Helena Parish Site Class VI Permit Number: R06-LA-0001

Page 123 of 168

- 6. Cement same with cement returns to surface. Refer to Well Cementing Program for details.
- 7. Install wellhead, test same per Shell requirements.
- 8. N/U BOP and test same (per LAC §111.F.2.d)
- 9. P/U BHA and RIH
- 10. Perform 1-hr casing test (per LAC §3617.A.3.a)
- 11. Drill-out shoe track

Intermediate Hole

- 1. Drill 12-1/4" hole to ~4,807 ft TMD (30 ft into Frio confining zone)
- 2. CBU, ensure well is stable and static
- 3. POOH
- 4. Run electric line logs per program (per LAC §3617.B.1.b.i and per LAC §3617.B.3)
- 5. Run cement bond log, variable density log, and temperature log (per LAC §3617.B.1.b.ii and c.ii) across 13-3/8" casing
- 6. R/U and run 9-5/8" casing to ~4,807 ft TMD, refer to Table 5.1 Well Casing Specifications for a detailed description of the casing.
- 7. Cement same with full returns to surface. Refer to Well Cementing Program for details.
- 8. Wait 12 hours and cut casing and install the 'B' section, test same per Shell requirements.
- 9. Install BOP.
- 10. Test BOP (per LAC §111.F.2.d)
- 11. P/U BHA and RIH
- 12. Perform 1-hr casing test (per LAC §3617.A.3.a)
- 13. Drill-out shoe track

Injection Hole

- 1. Perform shoe test (per LAC §3617.A.3.b)
- 2. Drill 8- $\frac{1}{2}$ " hole to ~6,805 ft TMD (200 ft below base of Frio), following core acquisition program.
- 3. CBU, ensure well is stable and static
- 4. POOH

- 5. Run electric line logs per program (per LAC §3617.B.1.b.i and §3617.B.3)
- 6. Run cement bond log, variable density log, and temperature log (per LAC §3617.B.1.b.ii and c.ii) across 9-5/8" casing
- 7. R/U and run 7" casing to ~6,805 ft TMD with 8.7" external casing packer set at 4,730 ft TMD. Refer to Table 5.1 Well Casing Specifications for a detailed description of the casing.
- 8. Cement same with full returns to surface. Refer to Well Cementing Program for details.
- 9. Wait on cement 12 hours. Cut casing install the 'C' wellhead section, test same per Shell requirements.
- 10. Install the BOP.
- 11. Test BOPs (per LAC §111.F.2.d)
- 12. P/U BHA and RIH
- 13. Perform 1-hr casing test (per LAC §3617.A.3.a) and acquire casing test affidavit
- 14. Drill-out shoe track

Test Hole

- 1. Perform shoe test (per LAC§3617.A.3.b)
- 2. Drill 6" hole to TD, as deep as 14,781 ft TMD, 100 ft below the base of the Tuscaloosa
- 3. CBU, ensure well is stable and static
- 4. POOH
- 5. Run electric line logs per program (per LAC§3617.B.1.b.i and §3617.B.3)
- 6. Run cement bond log, variable density log, and temperature log (per LAC §3617.B.1.b.ii and c.ii) across 7" casing
- 7. P/U cement stinger and RIH
- 8. Spot cement across open hole and abandon same. Refer to Well Cementing Program for details.
- 9. Flow check and POOH
- 10. WOC
- 11. RIH and tag cement top, dress-off cement to leave 50 ft good cement inside the 7" shoe
- 12. (TOC 6,755 ft)

13. Displace well from drilling mud to clear fluid

14. POOH

15. Install and test tubing head spool

16. Release drilling rig

5.3.1.2 Drilling Contingency Plans

In the event that unforeseen events occur, detailed plans to remedy the specific problem will be

implemented using best engineering practices and judgment based on facts. The following are

general contingency plans to address specific problems.

Borehole Drilling Lost Circulation Plan

If circulation is lost (low probability) while drilling the boreholes, lost circulation material pills

will be pumped to re-establish circulation. Depending upon the severity of lost circulation

encountered, lost circulation material may need to be blended with the drilling fluid in

concentrations dictated by hole conditions to maintain circulation to the surface casing point.

Should lost circulation occur while drilling from the base of conductor to the surface casing point,

paper, cottonseed hulls, or other forms of standard lost circulation material may be used to remedy

the loss condition.

Borehole Drilling Over pressured Zone

If an overpressure zone is encountered (not expected) while drilling the surface hole, the drilling

fluid pump rate down the drill pipe will be increased while the drill fluid density is increased. The

increased pumping rate will continue until the well stops flowing. If a drilling influx is encountered

while drilling any other hole section, the blow out preventer (BOP) will be closed-in, and the well

will be secured. The influx will be circulated out of the well while maintaining constant bottom

hole pressure using the choke to prevent additional influx. Finally, the mud weight will be

increased to a density sufficient to overbalance the well while circulating through the choke to

maintain constant bottom hole pressure throughout the circulation. Once kill weight mud has been

circulated around the well is confirmed to not be flowing, drilling will recommence.

Project Information Tracking for St. Helena Parish Site

Class VI Permit Number: R06-LA-0001

Page 126 of 168

Borehole Deviation Issues

Take inclination surveys minimum every 100 to 200 feet and at the TD for the hole size to monitor the well path. A maximum allowable deviation from vertical is 3 degrees, and maximum allowable deviation between surveys is 1 degree. If the maximum recommended deviation is exceeded, an evaluation will be made to determine whether remedial action is necessary.

5.3.1.3 Proposed Completion Procedures

The completion procedure has been developed to utilize the Frio Formation for sequestration of the injected CO₂. It is anticipated that the full interval in the Frio Formation will be utilized in each well completion. The following is a proposed completion procedure for the Soterra IF 1-1.

- 1. MIRU WL equipment, rig up PCE on 7-1/16" 10k valves
- 2. Cement bond log, variable density log, and temperature log (per LAC §3617.B.1.b.ii and c.ii) completed at end of drilling phase
- 3. RU WL and RIH Perforate the Frio formation
- 4. POOH and rig down wireline
- 5. Install 7-1/16" 10k x 3-1/16" 10k adaptor cap and 3-1/16" 10k valve on wellhead
- 6. Pressure Test wellhead
- 7. RU and prepare for agreed upon perforation clean up.
- 8. RU high pressure pumps and ancillary equipment to wellhead
 - a. Pressure test all pumping equipment and TPW
- 9. Perform Injection step rate test and fall off with brine water down 7" 29# casing
 - a. Compatibility test performed with Injection brine
 - b. Total Injection Volume 9,180 bbls
- 10. Evaluate results of the Injection test
- 11. RU WL and RIH and set cast iron bridge plug (CIBP)
- 12. POOH with WL
- 13. RU and RIH with WL Perforate the Frio formation
- 14. RU and prepare for agreed up perforation clean up.

- 15. RU high pressure pumps and ancillary equipment to wellhead
 - a. Pressure test all pumping equipment and TPW
- 16. Perform Injection step rate test and fall off with brine water down 7" 29# casing
 - a. Compatibility test performed with Injection brine
 - b. Total Injection Volume 9,180 bbls
- 17. POOH and rig down wireline
- 18. Rig down high-pressure pumps and ancillary equipment
- 19. RIH set CIBP via WL above Frio perforations
- 20. Place 30 feet of cement on to of CIBP to Temporary Abandonment (TA)
- 21. POOH and allow cement to develop strength
- 22. Inflow or pressure test per requirements
- 23. Install tubing hanger and 3" BPV
- 24. Remove 7" working valves and install 7-1/16" 10k x 3-1/16" 10k adaptor and 3-1/16" MV on wellhead
- 25. Remove 3-1/16" BPV and install TWCV. Pressure test connection.
- 26. Remove TWCV and install BPV. Leave production tree as per diagram.

The final completion procedure has been developed to utilize the Frio Formation for sequestration of the injected CO₂. It is anticipated that the full interval in the Frio Formation will be utilized in each well completion. The following is a proposed final completion procedure for the Soterra IF 1-1.

- 1. Pick up a 6-inch bit and casing scraper for 7.0-inch casing and trip into the wellbore.
- 2. Confirm cement top and if necessary, drill out the cement and CIBP at $\pm 5{,}177$ and continue to $\pm 6{,}755$ feet (50 feet above the casing shoe), milling up the second plug.
- 3. Lower the workstring into the wellbore to the bottom of the protection casing and circulate solids from the wellbore.
- 4. Pick packer on workstring and lower into wellbore.
- 5. Set injection packer at approximately $\pm 4,730$ feet. Conduct preliminary pressure test to verify pressure integrity of the well annulus.

Revision Number: 1 Revision Date: February 2023

Module A – Project Information Tracking

6. Retrieve the workstring from the wellbore.

7. Pick up the seal assembly on injection tubing and lower into the wellbore.

8. Circulate inhibitive packer fluid through wellbore until completion brine is fully displaced.

9. Land the tubing in the packer and wellhead and conduct preliminary annulus pressure test

to verify pressure integrity.

10. Nipple down well control equipment and install tubing head adapter.

11. Rig down workover rig and demobilize from site.

12. Conduct mechanical integrity test and ambient pressure test

13. Return well to site for installation and connection of surface equipment and piping.

General Notes:

• All depths referenced are approximate and are based on the expected log depth.

• Actual depths may vary based on lithology of local formations.

5.3.1.4 Proposed Well Fluids Program

Lost circulation material (LCM) will be on location to treat for fluid losses in top hole sands. The

fluid system will be pre-treated with LCM before encountering any known or suspected loss zones.

High-viscosity sweeps will be used to assist hole cleaning. Sodium chloride (NaCl) is planned for

use as the completion fluid. The fluid weight will be maintained to contain reservoir pressures

without inducing flow to the wellbore. Table 5-6 is provided to show the proposed well fluids per

hole.

5.3.1.5 Proposed Cementing Program

The surface and protection casing strings will be cemented using model cementing technology and

practices. Cementing standards and materials featured in as described in Section 5.2.4 will be used

during the construction of the well.

Page 129 of 168

Surface Casing

The following cementing program (Table 5-7) is proposed for installation of the surface casing string:

- 13-3/8-inch in 17-1/2-inch borehole at 2,900 feet
- Float shoe;
- Float Collar, 2 joints above the float shoe;
- Cement to surface;
- Cement volumes are estimated 50% excess over bit size in open hole interval;
- Actual volume to be calculated from caliper log plus 30% excess;
- In the event the hole diameter exceeds the scale of a 2-dimensional caliper, a minimum of 150 percent of the annular space between the casing and the maximum caliper reading will be used for calculating cement volume for that section of the wellbore.

Intermediate Casing

The following cementing program (Table 5-8) is proposed for installation of the intermediate casing string:

- 9-5/8-inch in 12-1/4-inch borehole at 4,807 feet
- Float shoe;
- Float Collar, 2 joints above the float shoe;
- Cement to surface;
- Cement volumes are estimated 30% excess over bit size in open hole interval;
- Actual volume to be calculated from caliper log plus 20% excess;
- In the event the hole diameter exceeds the scale of a 2-dimensional caliper, a minimum of 150 percent of the annular space between the casing and the maximum

caliper reading will be used for calculating cement volume for that section of the wellbore.

Completion Casing

The following cementing program (Table 5-9) is proposed for installation of the protection casing

string:

• 7.0-inch in 8-1/2-inch hole at 6,805 feet;

• Float shoe;

• Float Collar, 2 joints above the float shoe;

• Stage tool and external casing packer at 4,730 ft

• cement to surface;

• estimated 30% excess over bit size in open hole sections only;

• actual volume to be calculated from caliper log plus 20% excess; and

• In the event the hole diameter exceeds the scale of a 2-dimensional caliper, a

minimum of 150 percent of the annular space between the casing and the maximum

caliper reading will be used for calculating cement volume for that section of the

wellbore.

• 50 bbls of excess cement in the second stage in cased hole

5.3.1.6 Well Logging, Coring, and Testing Program

Details on the proposed logging program are contained in the "Pre-Operational Testing and

Logging Plan" submitted in Module D – Pre-Operational Testing. All tools will be run on a

wireline and will be compatible with open hole and cased hole diameters, allowing for successful

testing runs.

5.3.2 Soterra IT 2-1 Injection Well

The drilling program for the Soterra IT 2-1 (Lower Tuscaloosa Injector) at the St. Helena Parish

site contains a conductor hole, surface hole, intermediate hole, and injection hole. All depths in

Project Information Tracking for St. Helena Parish Site Class VI Permit Number: R06-LA-0001

Page 131 of 168

the outlined procedure are referenced to the DFE, which is estimated at 32.5 feet above ground level. The ground level elevation is 108.2 ft above MSL for the Soterra IT 2-1 well. All depths are specified as TMD from drill floor elevation DFE unless otherwise indicated.

5.3.2.1 Proposed Drilling Procedures

The following is the drilling and completion procedure for drilling the Soterra IT 2-1:

Surface Hole

- 1. Spud well
- 2. Drill 17-1/2" hole to 3,000 ft TMD
- 3. CBU and POOH
- 4. Run electric line logs per program (per LAC §3617.B.1.b.i and §3617.B.3)
- 5. R/U and run 13-3/8" casing to ~3,000 ft TMD, refer to Table 5.2 Well Casing Specifications for a detailed description of the casing.
- 6. Cement same with cement returns to surface. Refer to Well Cementing Program for details.
- 7. Install wellhead, test same per Shell requirements.
- 8. N/U BOP and test same (per §111.F.2.d)
- 9. P/U BHA and RIH
- 10. Perform 1-hr casing test (per LAC §3617.A.3.a)
- 11. Drill-out shoe track

Intermediate Hole

- 1. Drill 12-1/4" hole to ~13,550 ft TMD (50 ft below the base of the Austin Chalk)
- 2. CBU, ensure well is stable and static
- 3. POOH
- 4. Run electric line logs per program (per LAC §3617.B.1.b.i and §3617.B.3)
- 5. Run cement bond log, variable density log, and temperature log (per LAC §3617.B.1.b.ii and c.ii) across 13-3/8" casing
- 6. R/U and run 9-5/8" casing to \sim 13,550 ft TMD, refer to Table 5.2 Well Casing Specifications for a detailed description of the casing.

- 7. Cement same with full returns to surface. Refer to Well Cementing Program for details.
- 8. Wait 12 hours and cut casing and install the 'B' section, test same per Shell requirements.
- 9. Install BOP.
- 10. Test BOP (per §111.F.2.d)
- 11. P/U BHA and RIH
- 12. Perform 1-hr casing test (per LAC §3617.A.3.a)
- 13. Drill-out shoe track

Protection Hole

- 1. Perform shoe test (per LAC §3617.A.3.b)
- 2. Drill 8-½" hole to ~14,721 ft TMD (150 ft below base of the Lower Tuscaloosa Formation), following core acquisition program.
- 3. CBU, ensure well is stable and static
- 4. POOH
- 5. Run electric line logs per program (per LAC §3617.B.1.b.i and §3617.B.3)
- 6. Run cement bond log, variable density log, and temperature log (per LAC §3617.B.1.b.ii and c.ii) across 9-5/8" casing
- 7. R/U and run 7" casing to ~14,721 ft TMD with 8.7" external casing packer set at 13,500 ft TMD. Refer to Table 5.2 Well Casing Specifications for a detailed description of the casing strings.
- 8. Cement same with full returns to surface. Refer to Well Cementing Program for details.
- 9. Wait on cement 12 hours. Cut casing install the 'C' wellhead section, test same per Shell requirements.
- 10. Perform 1-hr casing test (per LAC §3617.A.3.a) and acquire casing test affidavit
- 11. Run cement bond log, variable density log, and temperature log (per LAC §3617.B.1.b.ii and c.ii) across 7" casing
- 12. Displace well from drilling mud to clear fluid
- 13. POOH
- 14. Install and test tubing head spool
- 15. Release drilling rig

Revision Date: February 2023 Module A – Project Information Tracking

5.3.2.2 Drilling Contingency Plans

Borehole Drilling Lost Circulation Plan

If circulation is lost (low probability) while drilling the boreholes, lost circulation material pills

will be pumped to re-establish circulation. Depending upon the severity of lost circulation

encountered, lost circulation material may need to be blended with the drilling fluid in

concentrations dictated by hole conditions to maintain circulation to the surface casing point.

Should lost circulation occur while drilling from the base of conductor to the surface casing point,

paper, cottonseed hulls, or other forms of standard lost circulation material may be used to remedy

the loss condition.

Borehole Drilling Over pressured Zone

If an overpressure zone is encountered (not expected) while drilling the surface hole, the drilling

fluid pump rate down the drill pipe will be increased while the drill fluid density is increased. The

increased pumping rate will continue until the well stops flowing. If a drilling influx is encountered

while drilling any other hole section, the blow out preventer (BOP) will be closed-in, and the well

will be secured. The influx will be circulated out of the well while maintaining constant bottom

hole pressure using the choke to prevent additional influx. Finally, the mud weight will be

increased to a density sufficient to overbalance the well while circulating through the choke to

maintain constant bottom hole pressure throughout the circulation. Once kill weight mud has been

circulated around the well is confirmed to not be flowing, drilling will recommence.

Borehole Deviation Issues

Take inclination surveys minimum every 500 feet and at the TD for the hole size to monitor the

well path. A maximum allowable deviation from vertical is 3 degrees, and maximum allowable

deviation between surveys is 1 degree. If the maximum recommended deviation is exceeded, an

evaluation will be made to determine whether remedial action is necessary.

Project Information Tracking for St. Helena Parish Site

Class VI Permit Number: R06-LA-0001 Page 134 of 168

5.3.2.3 Proposed Completion Procedures

The completion procedure has been developed to utilize the Lower Tuscaloosa Formation for sequestration of the injected CO₂. It is anticipated that the full interval in the Lower Tuscaloosa Formation will be utilized in each well completion. The following is a proposed completion procedure for the Soterra IT 2-1.

- 1. MIRU WL equipment, rig up PCE on 7-1/16" 10k valves
- 2. Run GR-CBL and other logs if necessary
- 3. RU WL and RIH Perforate the Lower Tuscaloosa formation
- 4. POOH and rig down wireline
- 5. Install 7-1/16" 10k x 3-1/16" 10k adaptor cap and 3-1/16" 10k valve on wellhead
- 6. Pressure Test wellhead
- 7. RU and prepare for agreed upon perforation clean up.
- 8. RU high pressure pumps and ancillary equipment to wellhead
 - a. Pressure tests all pumping equipment and TPW
- 9. Perform Injection step rate test and fall off with brine water down 7" 29# casing
 - a. Compatibility test performed with Injection brine
 - b. Total Injection Volume 9,180 bbls
- 10. Evaluate results of the Injection test
- 11. POOH and rig down wireline
- 12. Rig down high-pressure pumps and ancillary equipment
- 13. RIH set CIBP via WL above Lower Tuscaloosa perforations
- 14. Place 30 feet of cement on top of CIBP to Temporary Abandonment (TA).
- 15. Inflow or pressure test per requirements
- 16. Install tubing hanger and 3" BPV
- 17. Remove 7" working valves and install 7-1/16" 10k x 3-1/16" 10k adaptor and 3-1/16" MV on wellhead
- 18. Remove 3-1/16" BPV and install TWCV. Pressure test connection.

19. Remove TWCV and install BPV. Leave production tree as per diagram

The final completion procedure has been developed to utilize the Lower Tuscaloosa Formation for sequestration of the injected CO₂. It is anticipated that the full interval in the Lower Tuscaloosa Formation will be utilized in each well completion. The following is a proposed final completion procedure for the Soterra IT 2-1.

1. Pick up a 6-inch bit and casing scraper for 7.0-inch casing and trip into the wellbore.

2. Confirm cement top and if necessary, drill out the cement and CIBP at $\pm 14,296$ and continue to $\pm 14,671$ feet (50 feet above the casing shoe).

(Note: Perforating depths are approximate and will be determined after review of open hole logs.)

3. Lower the workstring into the wellbore to the bottom of the protection casing and circulate solids from the wellbore.

4. Pick up injection packer on workstring and lower into wellbore.

5. Set injection packer at approximately $\pm 13,500$ feet. Conduct preliminary pressure test to verify pressure integrity of the well annulus.

6. Retrieve the workstring from the wellbore.

7. Pick up the seal assembly on injection tubing and lower into the wellbore. Externally pressure test each connection.

8. Circulate inhibitive packer fluid through wellbore until completion brine is fully displaced.

9. Land the tubing in the packer and wellhead and conduct preliminary annulus pressure test to verify pressure integrity.

10. Nipple down well control equipment and install tubing head adapter.

11. Rig down drilling rig and demobilize from site.

12. Rig up coiled tubing and nitrogen equipment. Conduct formation backflow with nitrogen to develop well and collect native formation brine samples. An acid stimulation treatment may also be required and may be followed by wither a wellbore flowback to remove drilling/completion solids from near-wellbore interval or displacement of the acid into the formation.

Project Information Tracking for St. Helena Parish Site Class VI Permit Number: R06-LA-0001 13. Conduct mechanical integrity test and ambient pressure test per Section VI.A.9 – Well Logging, Coring, and Testing.

14. Return well to site for installation and connection of surface equipment and piping.

General Notes:

• All depths referenced are approximate and are based on the expected log depth.

• Actual depths may vary based on lithology of local formations.

5.3.2.4 Proposed Well Fluids Program

Lost circulation material (LCM) will be on location to treat for fluid losses in top hole sands. The

fluid system will be pre-treated with LCM before encountering any known or suspected loss zones.

High-viscosity sweeps will be used to assist hole cleaning. Sodium chloride (NaCl) is planned for

use as the completion fluid. The fluid weight will be maintained to contain reservoir pressures

without inducing flow to the wellbore. Table 5-10 is provided to show the proposed well fluids per

hole.

5.3.2.5 Proposed Cementing Program

The surface and protection casing strings will be cemented using model cementing technology and

practices. Cementing standards featured in Section 5.2.4 will be used during the construction of

the well.

Surface Casing

The following cementing program (Table 5-11) is proposed for installation of the surface casing

string:

• 13-3/8-inch in 17-1/2-inch borehole at 3,000 feet

• Float shoe;

• Float Collar, 2 joints above the float shoe;

• Cement to surface;

Project Information Tracking for St. Helena Parish Site Class VI Permit Number: R06-LA-0001

Page 137 of 168

- Cement volumes are estimated 50% excess over bit size in open hole interval;
- Actual volume to be calculated from caliper log plus 30% excess; and,
- In the event the hole diameter exceeds the scale of a 2-dimensional caliper, a
 minimum of 150 percent of the annular space between the casing and the maximum
 caliper reading will be used for calculating cement volume for that section of the
 wellbore.

Intermediate Casing

The following cementing program (Table 5-12) is proposed for installation of the intermediate casing string:

- 9-5/8-inch in 12-1/4-inch borehole at 13,550 feet; with 12.45" external casing packer and stage tool set at 7,400 feet;
- Float shoe;
- Float Collar, 2 joints above the float shoe;
- Cement to surface;
- Cement volumes are estimated 30% excess over bit size in open hole interval;
- Actual volume to be calculated from caliper log plus 20% excess; and,
- In the event the hole diameter exceeds the scale of a 2-dimensional caliper, a minimum of 150 percent of the annular space between the casing and the maximum caliper reading will be used for calculating cement volume for that section of the wellbore.

Protection Casing

The following cementing program (Table 5-13) is proposed for installation of the protection casing string:

- 7.0-inch in 8-1/2-inch hole at 14,721 feet, with 8.7" external casing packer and stage tool set at 13,500 feet;
- Float shoe:

Revision Number: 1 Revision Date: February 2023

Module A – Project Information Tracking

• Float Collar, two joints above the float shoe;

• cement to surface;

• estimated 30% excess over bit size in open hole sections only;

• actual volume to be calculated from caliper log plus 20% excess; and

• In the event the hole diameter exceeds the scale of a 2-dimensional caliper, a

minimum of 150 percent of the annular space between the casing and the maximum

caliper reading will be used for calculating cement volume for that section of the

wellbore.

• 50 bbls of excess cement in the second stage in cased hole

5.3.2.6 Well Logging, Coring, and Testing Plan

Details on the proposed logging program are contained in the "Pre-Operational Testing and

Logging Plan" submitted in Module D – Pre-Operational Testing. All tools will be run on a

wireline and will be compatible with open hole and cased hole diameters, allowing for successful

testing runs.

5.3.3 Wellhead Schematics

The final wellheads for each of the aforementioned wells will be similar with trim that is resistant

to the CO₂ stream and its impurities. All wellheads are per API standards. The tubing spool and

master valves shown are from the previous injection test and will be replaced prior to CO₂

injection. Wellhead Schematics are contained in Figure 5-3 for both injection wells.

Project Information Tracking for St. Helena Parish Site Class VI Permit Number: R06-LA-0001

Page 139 of 168

Shell has designed the sequestration project using 2 injection wells. These wells will be completed

into one or more of the project Injection Zones described above. All injection wells will follow the

40 CFR §146.87(a), (b), (c), and (d) and standards for logging and testing requirements. Coring

will be adaptive and based upon well spatial variability, wellbore conditions, core recovery, and

core quality as each project well is drilled. All wells will demonstrate mechanical integrity prior

to receiving authorization to inject.

The data obtained in this plan will be used to validate and update, if necessary, the "Area of Review

and Corrective Action Plan" (submitted in Module B), to define and reduce uncertainties with the

site characterization, revise the "E.1-Testing and Monitoring Plan" (submitted in Module E), and

determine final operational procedures and limits.

This plan has been uploaded in **Module D**:

"D. Pre-Operations Testing and Logging Plan (Rev. 0 – November 2022)"

Pre-Operational Logging and Testing GSDT Submissions

GSDT Module: Pre-Operational Testing

Tab(*s*): Welcome tab

Please use the checkbox(es) to verify the following information was submitted to the GSDT:

☑ Proposed pre-operational testing program [40 CFR 146.82(a)(8) and 146.87]

Revision Number: 1

Revision Date: February 2023

Module A – Project Information Tracking

7.0 WELL OPERATION

Shell will operate the Injection Wells at the St. Helena Parish Site per the operating requirements

in accordance with 40 CFR 146.82(a)(7) and (10). No injection operations will occur between the

outermost casing and the USDW per 40 CFR 146.88 (a). Operating the well in this fashion will

prevent the movement of fluids that could result in the pollution of a USDW and will prevent leaks

from any of the subject injection wells into unauthorized zones.

During injection operations, continuous measurements will be taken at the wellhead for injection

pressure, rate, volume, and temperature of the CO₂ stream [40 CFR 146.88(e)(1)]. The maximum

injection pressure is governed by the fracture gradient. Operating injection pressures are set at 80

percent below the calculated values (see Section 2.4.4 for value determination) when possible but

will always remain below 90 percent. Site specific in-situ fracture gradients will be determined

during the drilling and testing of the Class VI Injection Wells.

If there are major changes to the operational stream (density changes, composition, etc.) or a new

source, Shell may reevaluate and adjust the operating pressures with approval from the UIC

Program Director. Under routine operations, injection pressures that approach the limits shown

below will trigger reduced injection or a full system shutdown. Well conditions will then be

monitored to decide on steps to return to full rate injection. In cases where return to full injection

is not possible, additional troubleshooting steps may be required. Values in Tables 7-1 and 7-2

will be updated after drilling the appraisal wells and will be finalized after the completion of the

approved injection wells.

Shell will provide an analysis of the chemical and physical characteristics of the CO₂ stream prior

to injection operations [40 CFR 146.82(a)(7)(iv)]. The source(s) of the final stream will also be

provided in accordance with 40 CFR 146.82(a)(7)(iii).

During operations, Shell will analyze the composite carbon dioxide stream to yield data

representative of its chemical and physical characteristics and to meet the requirements of 40 CFR

§146.90(a) and LAC §3625.A.1 (State of Louisiana) as present in the E.1 - Testing and Monitoring

Plan – submitted in **Module E.**

Class VI Permit Number: R06-LA-0001

Page 141 of 168

Revision Number: 1

Revision Date: February 2023

Module A – Project Information Tracking

8.0 TESTING AND MONITORING

In accordance with USEPA 40 CFR §146.90, Shell has developed a testing and monitoring plan

for the lifetime of injection operations. In addition to demonstrating that the injection wells will

be operating as expected, that the carbon dioxide plume and pressure front are moving as predicted,

and there is no endangerment to USDWs, the monitoring data will be used to validate and guide

any required adjustments to the geologic and dynamic models used to predict the distribution of

carbon dioxide within the storage complex, supporting AoR evaluations and a non-endangerment

demonstration. Additionally, the testing and monitoring components include a leak detection plan

to monitor and account for any movement of the carbon dioxide outside of the storage complex.

Shell has designed the program with two Above Confining Zone Monitoring (ACZM) wells which

will be located on the well pads in close proximity to the Injection Wells. The initial ACZ

monitoring zone for the sequestration project will be a permeable sandstone (directly overlying the

Confining Zone) within the Lower Miocene Formation (exact sand will be identified following

appraisal drilling). Each of the ACZM wells is planned to be located near the point of carbon

dioxide injection, where elevated formation pressure within the storage project is expected to be

the greatest. The ACZM wells will be completed with a real-time, continuously recording

downhole pressure/temperature gauge.

Direct in-zone monitoring at the injection wells will confirm that the wells are performing as

intended; delivering the carbon dioxide to the subsurface storage intervals only (Injection Zones),

do not exceed safe injection pressures, and measure the pressure response in the reservoir intervals

(a key model match parameter). Downhole pressure gauges and injection logging in the

constructed injection wells will be used for data collection.

An additional In-Zone pressure (IZ) monitoring well, located updip from the injection wells, will

validate the dynamic model, calibrating both the growth of sequestered carbon dioxide plume and

pressure front over time. Downhole pressure gauges and injection logging in the constructed IZ

monitoring well will be used to collect real-time, continuous data. The IZ monitor well will be

located initially outside of the carbon dioxide plume and will primarily monitor the pressure

changes due to the developing pressure front.

Page 142 of 168

Revision Number: 1 Revision Date: February 2023 Module A – Project Information Tracking

The TMP has been uploaded in **Module E** – Project Plan Submission as Report:

"E.1 – Testing and Monitoring Plan (Rev. 0 – November 2022)"

A Quality Assurance and Surveillance Plan (QASP) for all testing and monitoring activities, required pursuant to §146.90(k), is provided in Appendix 1 – Quality Assurance and Surveillance Plan (QASP) to the Testing and Monitoring Plan.

Testing and Monitoring GSDT Submissions

GSDT Module: Project Plan Submissions **Tab(s):** Testing and Monitoring tab

Please use the checkbox(es) to verify the following information was submitted to the GSDT:

☑ Testing and Monitoring Plan [40 CFR 146.82(a)(15) and 146.90]

9.0 INJECTION WELL PLUGGING

The Injection Well Plugging Plan has been developed using the GSDT Template and meets the

requirements under 40 CFR 146.92(b). It contains testing prior to closure and plugging plans and

schematics for each injection well in this application. It has been uploaded in Module E – Project

Plan Submission as Report:

"E.2 – Injection Well Plugging Plan (Rev. 0 – November 2022)"

This plan will be updated as the project is developed to be consistent with the Injection Well "as

built" after construction.

Injection Well Plugging GSDT Submissions

GSDT Module: Project Plan Submissions

Tab(s): Injection Well Plugging tab

Please use the checkbox(es) to verify the following information was submitted to the GSDT:

☑ Injection Well Plugging Plan [40 CFR 146.82(a)(16) and 146.92(b)]

10.0 POST INJECTION SITE CARE (PISC) AND SITE CLOSURE

The Post Injection Site Care (PISC) and Site Closure Plan has been developed using the GSDT

Template and meets the requirements under 40 CFR 146.9. It has been uploaded in Module E –

Project Plan Submission as Report:

"E.3 – Post Injection Site Care and Closure Plan (Rev. 0 – November 2022)"

Shell plans to implement a PISC over a 50-year timeframe to demonstrate conformance and

containment. Data will be gathered to track the position of the CO₂ plume, declining pressure front

and to demonstrate that the USDW is not endangered, using an adaptive, sustainable, risk-based

monitoring approach. Figures representing the pressure differentials in each injection zone, as well

as figures projecting the plume extent, both at the end of the 50-year observation period are

included.

Depending on project performance during the project life cycle, Shell may request an alternative

PISC timeframe based upon modeling results and AoR reevaluations. Prior to authorization for

site closure, Shell will demonstrate that no additional monitoring is needed to ensure that the

geologic sequestration project does not pose an endangerment to USDWs as per 40 CFR

146.93(b)(3).

PISC and Site Closure GSDT Submissions

GSDT Module: Project Plan Submissions

Tab(s): PISC and Site Closure tab

Please use the checkbox(es) to verify the following information was submitted to the GSDT:

☑ PISC and Site Closure Plan [40 CFR 146.82(a)(17) and 146.93(a)]

11.0 EMERGENCY AND REMEDIAL RESPONSE

The Emergency and Remedial Response Plan (ERRP) has been developed using the GSDT Template and meets the requirements under 40 CFR 146.94(a). It has been uploaded in **Module E** – Project Plan Submission as Report:

"E.4 – Emergency and Remedial Response Plan (Rev. 0 – November 2022)"

The ERRP Plan will be updated and further developed to meet the project's needs throughout three phases of development: 1) Construction; 2) Operation; and 3) Post-Injection Site Closure. Revisions will be drafted and notated with date of submittal. Detailed information is contained in the Emergency and Remedial Response Plan [40 CFR 146.94(a)] submitted within **Module E** – Project Plan Submission through the GSDT Tool.

Emergency and Remedial Response GSDT Submissions

GSDT Module: Project Plan Submissions

Tab(s): Emergency and Remedial Response tab

Please use the checkbox(es) to verify the following information was submitted to the GSDT:

☑ Emergency and Remedial Response Plan [40 CFR 146.82(a)(19) and 146.94(a)]

12.0 <u>INJECTION DEPTH WAIVER AND AQUIFER EXEMPTION</u> <u>EXPANSION</u>

Shell is not requesting an Injection Depth Waiver or an Aquifer Exemption Expansion. Therefore, this section is not applicable.

13.0 OPTIONAL ADDITIONAL PROJECT INFORMATION

Shell has not identified any current Federal laws that may impact injection at the St. Helena Parish site. However, Shell will apply for a Class VI Injection well permit (in addition to the federal request) to the State of Louisiana, through the LDNR. This well permit application is a requirement for all Class VI wells that are to be drilled in the state, regardless of primacy status.

14.0 OTHER RELEVANT INFORMATION

No additional information or documents have been requested by the UIC Program Director to date for this Class VI Permit Application for the St. Helena Parish site.

However, Shell has performed an initial assessment using the Environmental Justice Screening and Mapping Tool (EJScreen Tool) in November 2022. Reports applicable to the project are contained in Appendix E to this Project Narrative.

REFERENCES

- Adkins, W. S., 1933, The Mesozoic systems in Texas, The geology of Texas; v. 1, Stratigraphy; University of Texas Bulletin 3232 p. 239-517
- Ambrose, W. A., Loucks, R. G. and Dutton, S. P., 2015, Sequence stratigraphy and depositional controls on reservoir quality in lowstand incised-valley-fill and highstand shallow marine systems in the Upper Cretaceous Cenomanian Tuscaloosa Formation, Louisiana, U. S. A: Gulf Coast Association of Geological Societies Journal, v. 4, p. 43-66
- Archie, G. E., 1942, The electrical resistivity log as an aid in determining some reservoir characteristics, Petroleum Transactions of the AIME, v. 146, p. 54-62.
- Aronow, S. and Wesselman, J. B., 1971, Groundwater Resources of Chambers and Jefferson Counties, Texas: Texas Water Development Board Report No. 133.
- Baria, L. R., Stoudt, D. L., Victoria, P. M. and Crevello, P. D., 1982, Upper Jurassic reefs of Smackover Formation, United States Gulf Coast: Am. Assoc. Petroleum Geologists Bull., v. 66, n. 10, p. 1449-1482.
- Bebout, D. G. and Gutierrez, D. R., 1983, Regional Cross Section Louisiana Gulf Coast, Eastern Part, Louisiana Geological Survey, Folio Series No. 6, p.1-10.
- Bentley, C. B., 1983, Preliminary Report of the Geohydrology Near Cypress Creek and Richton Salt Domes, Perry County, Mississippi: Water-Resources Investigations Report 83-4169, U. S. G. S., Jackson, MS.
- Berg, R. B. and Cook, B. C., 1968, Petrography and origin of Lower Tuscaloosa sandstones, Mallalieu Field, Lincoln County, Mississippi: Gulf Coast Association of Geological Societies Transactions, v. 18, 242-255.
- Bethke, C. M., Harrison, W. J., Upson, C. and Altaner, S. P., 1988, Supercomputer analysis of sedimentary basins: Science, v. 239, Washington, D. C.
- Bornhauser, M., 1960, Depositional and structural history of Northeast Hartburg field, Newton County, Texas: AAPG Bulletin, v. 44, no. 4, p. 458-470
- Bowden R K, Curran J H, 1984. Time-dependent behaviour of joints in Shale. In: Dowding C H, Singh M M (eds). Rock mechanics in productivity and production: proceedings of the 25th U.S. Symposium on Rock Mechanics, Northwestern University, Evanston, Illinois, 25–27 June 1984. Littleton: Society of Mining Engineers, pp 320–327.
- Brantly, J. A., Seanor, R. C., and McCoy, K. L. 2002, "Louisiana groundwater map No. 13, hydrogeology and potentiometric surface of the Sparta aquifer in, northern Louisiana, October 1996." Water-Resources Investigations Rep. No. 02-4053, U.S. Geological Survey, Denver

- Bredehoeft, J.D., & Pinder, G.F., 1970, Digital Analysis of Areal Flow in Multiaquifer Groundwater Systems: A Quasi Three-Dimensional Model. *Water Resources Research*, 6, 883-888.
- Brendsdal, A.O.E., 2017, The capacity of creeping shale to form an annular barrier, Master Thesis, Norwegian University of Science and Technology, Department of Geoscience and Petroleum.
- Brown, G. F., Foster, V. M., Adams, R. W., Reed, E. W. and Padgett, H. D., 1944, Geology and groundwater resources of the coastal area in Mississippi: Mississippi State Geological Survey, Bulletin 60, 232.
- Byerly, G. R., 1991, Igneous Activity, Chapter 6 in Salvador, A., The Geology of North America Vol. J, The Gulf of Mexico Basin: The Geological Society of America, 90-108.
- Chang, C. and Zoback, M.D., 2009, Viscous creep in room-dried unconsolidated Gulf of Mexico shale (I): Experimental results. Journal of Petroleum Science and Engineering, 69, 239-246
- Chasteen, H. R., 1983, Reevaluation of the lower Tuscaloosa and Dantzler Formations Mid-Cretaceous with emphasis on depositional environments and time-stratigraphic relationships: Gulf Coast Association of Geological Societies Transactions, v. 33, 31-40.
- Chen-Charpentier, B. and Herrera I.R., 1982, Numerical Treatment of Leaky Aquifers in the Short Time Range. Water Resources Research. 18. 557-562
- Clark, J. E., 1988, Groundwater flow in deep saline aquifers: Special Session on the Hydrologic and Geochemical Processes Involved in Deep Injection of Liquid Wastes, Groundwater Committee of the American Geophysical Union and the International Association of Hydrogeologists, Baltimore, Maryland.
- Clark, J. E., Howard, M. R., and Sparks, D. K., 1987, Factors that can Cause Abandoned Wells to Leak as Verified by Case Histories from Class II injection, Texas Railroad Commission files: International Symposium on Subsurface Injection of Oilfield Brines, Underground Injection Practices Council, New Orleans, LA., p. 166-223.
- Clark J. E., Bonura, D. K., Papadeas, P. W., McGowen, R., 2005, Gulf Coast Borehole-Closure-Test Well Near Orange, Texas: Developments in Water Science, v. 52, p. 157-166.
- Clark, W. J., 1995, Depositional environments, diagenesis, and porosity of Upper Cretaceous volcanic-rich Tokio sandstone reservoirs, Haynesville field, Claiborne Parish Louisiana: Transactions—Gulf Coast Association of Geological Societies, v. 45, p. 127–134.
- Clifford, M. J., 1973, Hydrodynamics of the Mt. Simon Sandstone, Ohio, and Adjacent Areas: in Underground Waste Management and Artificial Recharge Vol. l, American Association of Petroleum Geologists, Tulsa, OK.

- Clifford, M. J., 1975, Subsurface Liquid Waste Injection in Ohio: Ohio Geological Survey Information Circ., n. 43.
- Collier, A.L. and Sargent, B.P., 2015, Water Use in Louisiana, 2015, Department of Transportation and Development, Water Resources Special Report No. 18
- Collins, R. E., 1986, Potential Breaches in the Confining Layer Near Injections Wells on the Gulf Coastal Plain. Report to E.I. du Pont de Nemours & Co. Inc.
- Cox, R. T. and Van Arsdale, R. B., 2002, The Mississippi Embayment, North America: a first order continental structure generated by Cretaceous superplume event: Journal of Geodynamics, v. 34, p. 163-176
- Davis, K. E., 1986, Factors Effecting the Area of Review for Hazardous Waste Disposal Wells: Proceedings of the International Symposium on Subsurface Injection of Liquid Wastes, New Orleans, National Water Well Association, Dublin, OH, p. 148-194.
- Dawson, W. C. and Reaser, D. F., 1990, Trace fossils and paleoenvironments of lower and middle Austin Chalk Upper Cretaceous, north-central Texas: Transactions— Gulf Coast Association of Geological Societies, v. 40, p. 161–173.
- Dawson, W. C., Katz, B. and Robison, V. D., 1995, Austin Chalk (!) petroleum system Upper Cretaceous, southeastern Texas: a case study: Transactions—Gulf Coast Association of Geological Societies, v. 45, p. 157–163.
- Dawson, W. C., 2000, Shale Microfacies; Eagle Ford Group Cenomanian-Turonian North-Central Texas Outcrops and Subsurface Equivalents, Gulf Coast Association of Geological Transactions, v. 50, p. 607-627
- Decade of North American Geology 1991 see Ewing, T. E. and Lopez, J. A., 1991
- Devery, D. M., 1980, The Lower Tuscaloosa of Southern Mississippi: Mississippi Geology, Vol 1, Number 2 December 1980
- Dockery, D. T., 1977, Mollusca of the Moodys Branch Formation, Mississippi. Mississippi Geological, Economic and Topographical Survey, Bulletin 120,
- Donovan, A. and Staerker, T. S., 2010, Sequence Stratigraphy of the Eagle Ford Boqullias Formation in the Subsurface of South Texas and Outcrops of West Texas, Gulf Coast Association of Geologic Societies Transactions, v. 60, p. 861-899
- Drumm, T. and Nunn, J. A., 2012, Geothermal and Geopressure Assessment with Implications for Carbon Dioxide Sequestration, Lower Tuscaloosa Formation, Louisiana, Gulf Coast Association of Geological Societies Transactions, pp 39-55.
- Dutton, S.P., Loucks, R.G., 2014, Reservoir quality and porosity-permeability trends in on shore Wilcox sandstones, Texas, and Louisiana Gulf Coast: Application to deep Wilcox plays, offshore Gulf of Mexico. GCAGS Journal 3, 33-40.

- Eaton, B. A., 1969, Fracture Gradient Prediction And its Application in Oilfield Operations, Journal of Petroleum Technology, volume 21: 1353 – 1360.
- Eaton, B. A., 1972, The effect of overburden stress on geopressure prediction from well logs, Journal Petroleum Technology, v. 24, Issue 8 August, 929 934.
- Esker, G. C., 1968, Biostratigraphy of the Cretaceous-Tertiary Boundary in the East Texas Embayment Based on Planktonic Foraminifera, LSU Historical Dissertations and These. 1484.
- Everett, A. G., Anderson, J. J. and Shakoor, A., 1986, Factors Affecting the Integrity of Confining Beds for Injected Waste Reservoirs: A Review: Underground Injection Committee Modeling Work Group, Chemical Manufacturers Association, Inc., Vol. II, pp 1-60.
- Ewing, T. E., 2009, The Ups and Downs of the Sabine Uplift and Northern Gulf of Mexico Basin; Jurassic Basement Blocks, Cretaceous Therman Upfits and Cenozoic Flexure: Gulf Coast Association of Geological Societies Transactions, v. 59, p. 253-269
- Ewing, T. E. and Galloway, W. E., 2019, Evolution of the Northern Gulf of Mexico Sedimentary Basin, in Miall, A. D., ed., Sedimentary Basins of the United States and Canada, Second Edition: The Netherlands, Elsevier, p. 627-694
- Ewing, T. E. and Lopez, J. A., 1991, Principal structural features, Gulf of Mexico basin: in A. Salvador, ed., The Gulf of Mexico Basin: The Geological Society of America, The Geology of North America, v. J., plate 2, 1 sheet.
- Fendick, R.B., Jr., 2007, Generalized Potentiometric Surface of the Amite Aquifer and the "2-800-Foot" Sand of the Baton Rouge Area in the Southeastern Louisiana, June-August 2006: U.S. Geological Survey Scientific Investigations Map 2984, 1 sheet
- Fjær, E., Holt, R. M., Raaen, A., 2008, Chapter 1 Elasticity: Petroleum Related Rock Mechanics, Second Edition: The Netherlands, Elsevier, p. 1-54
- Fogg, G. E. and Kreitler, C. W., 1982, Groundwater hydraulics and hydrochemical facies in Eocene aquifers of the East Texas Basin: University of Texas at Austin, Bureau of Economic Geology Report of Investigations No. 127, 75 p.
- Fogg, G. E., Seni, S. J. and Kreitler, C. W., 1983, Three-dimensional ground-water modeling in depositional systems, Wilcox Group, Oakwood Salt Dome area, East Texas: Texas Bureau of Economic Geology Report of Investigations 133, Austin, 55 p.
- Folk, R. L., 1959, Practical petrographic classification of limestones: American Association of Petroleum Geologists Bulletin, v. 43, p. 1–38.
- Foote, R.Q., 1984, Open-File Report Vol. 1984 (84-339), Summary report on the regional geology, petroleum potential, environmental consideration for development, and estimates of undiscovered recoverable oil and gas resources of the United States Gulf of Mexico

- Continental Margin in the area of proposed oil and gas lease sales nos. 81 and 84. US Geological Survey Open-File Report 84-339, p. 1-193.
- Galloway, W. E., 1968, Depositional systems of the lower Wilcox Group, north-central Gulf Coast Basin: Gulf Coast Association of Geological Societies Transactions, v. 18, p. 275–289.
- Galloway, W. E., 1989, Genetic stratigraphic sequences in basin analysis I: Architecture and genesis of flooding surface bounded depositional units: The American Association of Petroleum Geologists Bulletin, v. 73, no. 2, p. 125–142.
- Galloway, W. E., 2008, Depositional evolution of the Gulf of Mexico sedimentary basin, in Hsü, K. J., ed., Sedimentary basins of the world, Volume 5, The sedimentary basins of the United States and Canada, Miall, A. D., ed.: The Netherlands, Elsevier, p. 505–549.
- Galloway, W. E., Hobday, D. K. and Magara, K., 1982(a), Frio Formation of the Texas Gulf of Mexico Basin-depositional systems, structural framework and hydrocarbon origin, migration, distribution, and exploration potential: Bureau of Economic Geology, Report of Investigations No. 122, The University of Texas at Austin, Austin, Texas, p. 78.
- Galloway, W. E., Henry, C. G. and Smith, G. E., 1982(b), Depositional framework, hydrostratigraphy and uranium mineralization of the Oakville sandstone Miocene Texas Coastal Plain: Bureau of Economic Geology, Report of Investigations No. 113, The University of Texas at Austin, Austin, Texas, 59 p.
- Galloway, W. E., Ganey-Curry, P. E., Li, X. and Buffler, R. T., 2000, Cenozoic depositional history of the Gulf of Mexico basin: AAPG Bulletin, v. 84, no. 11, p. 1743-1774.
- Galloway, W. E., Whiteaker, T. L. and Ganey-Curry, P., 2011, History if Cenozoic North American Drainage basin evolution, sediment yield and accumulation in the Gulf of Mexico Basin, Geosphere, August 211; v. 7; no. 4; p. 938-973
- Glawe, L. N. and Bell, D. E., 2014, A Substitute Reference Section for the Wilcox Group, Paleocene-Eocene, from Northwestern Louisiana, GCAGS, Lafayette, Louisiana.
- Gray, G. R., H. C. H. Darley, and W. F. Rodgers, 1980, Composition and Properties of Oil Well Drilling Fluids: Gulf Publishing Company, Houston, Texas.
- Griffith, J.M., 2003, West-east hydrogeologic section I-I', Southeastern Louisiana Plate 11: Louisiana Department of Transportation and Development, Water Resources Technical Report 72
- Gunter, W., Perkins, E. and McCann, T., 1993, Aquifer disposal of CO2-rich gases: Reaction design for added capacity: Energy Conversion and Management. 34. 941-948.
- Han, H. X., 2021, Effects of transient borehole deformation on rock stress and rock properties analysis: University of Waterloo Doctoral Thesis

- Hantush, M. S., 1964, Hydraulics of Wells: Advances in Hydroscience, Vol. 1, Ed.: V. T. Chow, Academic Press, New York, pp. 281–432.
- Hart, B. S., Flemings, P. B., & Deshpande, A., 1995, Porosity and pressure: Role of compaction disequilibrium in the development of geopressures in a Gulf Coast Pleistocene basin. *Geology*, 23(1), 45-48.
- Hearne, J. H. and Lock, B. E., 1985, Diagenesis of the Lower Tuscaloosa as seen in the du Pont de Nemours No. 1 Lester Earnest, Harrison County, Mississippi: Gulf Coast Association of Geological Societies Transactions, v 35, 387-393.
- Hiland, P., 2010, Memo to Brian W. Sheron Director Office of Nuclear Regulatory Research, Subject: Safety/Risk Assessment results for the Generic Issue 199, "Implications of Updated Probabilistic Seismic Hazard Estimated in Central and Eastern United States on Existing Plants.: see also US Nuclear Regulatory Commission.
- Holt, R.M., Larsen, I., Fjær, E. and Stenebraten, J.F., 2020, Comparing mechanical and ultrasonic behaviour of a brittle and a ductile shale: Relevance to prediction of borehole stability and verification of shale barriers, J. of Petroleum Science and Engineering, 187, 106746.
- Hosford, W. F., 2005, Mechanical Behavior of Materials. United Kingdom: Cambridge University Press.
- Hosman, R. L., 1996, Regional Stratigraphy and subsurface geology of Cenozoic deposits. Gulf Coastal Plain, South-Central United States: U. S. Geological Survey professional paper; 1416-G
- Hosman, R.L., Long, A.T., Lambert, T.W., and others, 1968, Tertiary aquifers in the Mississippi embayment, with discussions of quality of the water, by Jeffery, H.G.: U.S. Geological Survey Professional Paper 448-D, 29 p.
- Hosseini, S. A., Lashgari, H., Nicot, J. P., Hovorka, S. D., Lu J., Kordi, M., Chang, K. W., 2012, Site characterization and reservoir history matching for geological CO2 sequestration at the S3 site: 11th Annual Carbon Capture, Utilization and Sequestration Conference, Pittsburgh, PA
- Hovorka, S. D. and Nance, H. S., 1994, Dynamic depositional and early diagenetic processes in a deep-water shelf setting, Upper Cretaceous Austin Chalk, north Texas: Transactions—Gulf Coast Association of Geological Societies, v. 44, p. 269–276.
- Hovorka, Susan D., and Jiemin Lu. 2019. "Field Observations of Geochemical Response to CO2 Injection at the Reservoir Scale." In Science of Carbon Storage in Deep Saline Formations, 33–61. Elsevier.
- Howe, H. J., 1962, Subsurface geology of St. Helena, Tangipahoa, Washington and St. Tammany Parishes, Louisiana: GCAGS Trans., v. 12, p. 121-155.

- Iler, R. K., 1979, The Chemistry of Silica: New York, Wiley and Sons, pp. 34-40.
- Jackson, M. P. A. and Galloway, W. E., 1984, Structural and depositional styles of Gulf Coast Tertiary continental margins: Application to hydrocarbon exploration: Am. Assoc. Petroleum Geologists, Continuing Education Course Note Series No. 25, p. 147, 215.
- John, C.J., Jones, B.L., Moncrief, J.E., Bourgeois, R., Harder, B.J., 1997. An Unproven Unconventional Seven Billion Barrel Oil Resource-The Tuscaloosa Marine Shale. BRI Bulletin. V. 7, pp. 1-22
- Johnston, O. C. and Greene, C. J., 1979, Investigation of Artificial Penetrations in the Vicinity of Subsurface Disposal Wells: Texas Department of Water Resources.
- Johnston, O. C., and Knape, B. K., 1986, Pressure effects of the static mud column in abandoned wells: Texas Water Commission LP 86-06, 106 p.
- Jones, T. A. and Haimson, J. S., 1986, Demonstration of Confinement: An Assessment of Class 1 Wells in the Great Lakes and Gulf Coast Regions: Journal of the Underground Injection Practices Council, Number 1, pp. 279-317.
- Kaszuba, J.P., Janecky, D.R. and Snow, M., 2005, Experimental evaluation of mixed fluid reactions between supercritical carbon dioxide and a NaCl brine: relevance to the integrity of a geologic carbon repository. Chemical Geology, vol 217, p 277-293
- Kehle, R. O., 1971, (in Drumm, T. and Nunn, J. A., 2012) Origin of the Gulf of Mexico: University of Texas at Austin, Geology Library, unpublished report, unpaginated.
- Kestin, Khalifa, E. H., Correia, R. J., 1981, Tables of the Dynamic and Kinematic Viscosity of Aqueous NaCI Solutions in the Temperature Range 20-150 °C and the Pressure Range 0. 1-35 MPa: J. Phy~. Chem. Ref. Data. Vol. 10. No. 1. Pp. 71-87.
- Kharaka Y.K., Cole D.R., Hovorka S.D., Gunter W.D., Knauss K.G., Freifeld B.M. (2006) Gas—water–rock interactions in Frio Formation following CO₂ injection: implications for the storage of greenhouse gases in sedimentary basins. Geology 34(7):577–580
- Kidwell, A. L., 1951, Mesozoic igneous activity in the northern Gulf Coastal Plain: GCAGS Trans., v. 1, p. 182-199.
- Kordi, M., Hovorka, S., Milliken, K., Trevino, R. and Lu, J., 2010. Diagenesis and reservoir heterogeneity in the Lower Tuscaloosa Formation at Cranfield Field, Mississippi. *GCCC Digital Publication Series*, #10-13.
- Kose, S. G., 2013, Crustal Architecture, Cretaceous Rise and Igneous Activity of Sabine, Monroe and Jackson Uplifts, Northern Gulf of Mexico Basin, Master's Thesis, University of Houston

- Kreitler, C. W., 1986, Hydrogeology of sedimentary basins as it relates to deep-well injection of chemical wastes, Proceedings of the International Symposium on Subsurface Injection of Liquid Wastes, New Orleans, National Water Well Assoc., Dublin, Ohio, pp. 398-416.
- Kreitler. C. W. and Richter. B.C. 1986, Hydrochemical Characterization of Saline Aquifers of the Texas Gulf Coast Used for the Disposal of industrial Waste: The University of Texas at Austin. Bureau of Economic Geology. contract report to the U.S. Environmental Protection Agency. Contract No. R-812785-01-0. 164 p.
- Kreitler, C. W., Akhter, M. S., Donnelly, A. C. A. and Wood, W. T., 1988, Hydrogeology of formations used for deep-well injection, Texas Gulf Coast: Prepared for the U. S. Environmental Protection Agency under Cooperative Agreement ID No. CR812786-01-0, The University of Texas at Austin, Bureau of Economic Geology Austin, Texas, 215 p.
- Kristiansen, T.G., Dyngeland, T., Kinn, S., Flatebø, R. and Aarseth, N.A., 2018, Activating shale to form well barriers: Theory and field examples, SPE-191607-MS.
- Krutak, P. R. and Beron, P., 1993, Heterostegina zone carbonates, Southeastern Louisiana-offshore Mississippi: petrography, seismic stratigraphy, hydrocarbon potential: Gulf Coast Association of Geological Societies Transactions, v. 43, p. 183-194
- Land, L.S., & Fisher, R.S., 1987, Wilcox sandstone diagenesis, Texas Gulf Coast: a regional isotopic comparison with the Frio Formation. *Geological Society, London, Special Publications*, 36, 219 235.
- Lawless, P. N. and Hart, G. F., 1990, The LaSalle Arch and its Effects on Lower Paleogene Genetic Sequence Stratigraphy, Nebo-Hemphill Field, LaSalle Parish, Louisiana. Gulf Coast Association of Geological Societies Transactions, v. 40, p. 459-473
- LBNL, 2014, Final report on experimental and numerical modeling activities for the Newark Basin: Lawrence Berkeley National Laboratory, Berkeley California, 130 p.
- Ledger, E. B., Tieh, T. T. and Rowe, M. W., 1984, An evaluation of the Catahoula Formation as a uranium source rock in East Texas: Gulf Coast Association of Geologists Society. Transactions, v. 34, pp. 99-108.
- Leeds and Associates, 1989, Seismic Effects/DuPont DeLisle Plant, Mississippi.
- Leeds and Associates, 1989, Seismic Effects/DuPont Sabine River Works, DuPont Sabine River Work.
- Loizzo, M., Lecampion B., Mogilevskaya S., 2017, The role of geological barriers in achieving robust well integrity. Energy Procedia. Pp. 5193-5205
- Loucks, R. G., Dodge, M. M. and Galloway, W. E., 1986, Controls on porosity and permeability of hydrocarbon reservoirs in lower Tertiary sandstones along the Texas Gulf Coast: Bureau of Economic Geology, Report of Investigations No. 149.

- Louisiana Department of Environmental Quality, 2003. Chicot Aquifer Summary Baseline Monitoring Program, FY 2002. Appendix 10 of the 2003 Triennial Summary Report of the Environmental Evaluation Division of the LDEQ.
- Louisiana Department of Natural Resources; Strategic Online Natural Resources Information System, SONRIS, Louisiana Department of Natural Resources database. www.sonris.com
- Louisiana Department of Natural Resources ASSET Aquifer Summaries 2012 Sparta Aquifer https://deq.louisiana.gov/page/asset-aquifer-summaries-2012
- Lovelace, J. K., Fontenot, J. W., Frederick, C. P., 2004. Withdrawals, Water Levels and Specific Conductance in the Chicot Aquifer System in Southwestern Louisiana, 2000-03. U. S. Geological Survey, Scientific Investigations Report 2004-5212, p. 61.
- Lowry, P., 1988, Stratigraphic Framework and Sedimentary Facies of a Clastic Shelf Margin: Wilcox Group Paleocene-Eocene, Central Louisiana; Louisiana State University and Agricultural and Mechanical College, PhD Dissertation
- Lu., J., Kordi, M., Hovorka, S. D., Meckel, T. A. and Christopher, C. A., 2013, Reservoir characterization and complications for trapping mechanisms at Cranfield CO2 injection site: International Journal of Greenhouse Gas Control, v. 18, pp. 361-374.
- Lund Snee, J. E., & Zoback, M. D., 2016, State of stress in Texas: Implications for induced seismicity. *Geophysical Research Letters*, 43(19), 10-208.
- Lund Snee, J. E. and Zoback, M. D. 2022, State of stress in areas of active unconventional oil and gas development in North America. *AAPG Bulletin* 2022 106 (2): 355–385.
- Lund Snee, JE., Zoback, M.D., 2020(b), Multiscale variations of the crustal stress field throughout North America. *Nat Commun* 11, 1951 (2020). https://doi.org/10.1038/s41467-020-15841-5
- Mancini, E. A., Mink, R. M., Bearden, B. L. and Wilkerson, R. P., 1985, Norphlet Formation Upper Jurassic of southwestern and offshore Alabama: environments of deposition and petroleum geology: Am. Assoc. Petroleum Geologists Bull., v. 69, n. 6, p. 881-889.
- Mancini, E. A., Mink, R. M., Payton, J. W. and Bearden, B. L., 1987, Environments of deposition and petroleum geology of Tuscaloosa Group Upper Cretaceous, South Carlton and Pollard Fields, Southwestern Alabama: American Association of Petroleum Geologists Bulletin, v. 71, 1128-1142.
- Martin, A., Jr and Whiteman, C.D., Jr. 1985, Generalized Potentiometric Surface of Aquifers of Pleistocene Age, Southern Louisiana, 1980. U.S. Geological Survey Water-Resources Investigation Report 84-4331.
- Martin, A. T., 2014, Depositional History and Stratigraphic Framework of Upper Cretaceous Campanian to Maastrichtian Strata in the Minerva-Rockdale Oil Field of Milam County

- and Adjacent Counties, Texas, Graduate Theses and Dissertations, University of Arkansas, Fayetteville
- Mathers, A. C., Weed, S. B., Coleman, N. T. 1955, The effect of acid and heat treatment on montmorillonoids: Clays and Clay Minerals: Proceedings of the Third National Conference on Clays and Clay Minerals, the Rice Institute, Houston, Texas, October 26-29, 1954 National Academy of Sciences, National Research Council, Publication 395, p. 403-412.
- Matthews, W. R. and Kelly, J., 1967, How to predict formation pressure and fracture gradient from electric and sonic logs: The Oil and Gas Journal, Figure 3, ADT 21
- McGee, B.D. and Brantly, J.A., 2015, Potentiometric surface, 2012, and water-level differences, 2005–12, of the Sparta Aquifer in north-central Louisiana: U.S. Geological Survey Scientific Investigations Map 3313, 2 sheets
- McGlothlin, T., 1944, General Geology of Mississippi: Bulletin of the American Association of Petroleum Geologists Vol. 28, No. 1 January 1944, p. 29-62
- McGuire, V.L., Seanor, R.C., Asquith, W.H, Kress, W.H., and Strauch, K.R., 2019, Potentiometric Surface, Mississippi River Valley Alluvial Aquifer, Spring 2016, U.S. Geological Survey Scientific Investigations Map 3439, pp. 14
- Meckel, T. A., Hovorka, S. D., 2009, Results from continuous downhole monitoring, PDG, at a field-scale CO2 demonstration project, Cranfield, MS. Soc. Pet. Eng. SPE 127087, p. 8
- Meckel, T.A., Nicholson, A.J., and Trevino, R.H., 2017, Capillary Aspects of Fault-Seal Capacity for CO2 Storage, Lower Miocene, Texas Gulf of Mexico", in Geological CO₂ Sequestration Atlas of Miocene Strata, Offshore Texas State Waters, Bureau of Economic Geology, 2017.
- Miller, C., Hales C., Clark, J. E. and Collins, G., 1989, Density drive flow near salt domes: Underground Injection Practices Council Winter Meeting, San Antonio, Texas.
- Moody, C. L., 1949, Mesozoic igneous rocks of the Northern Gulf Coastal Plain; American Associated of Petroleum Geologists Bulletin, v. 33, p 1410-1428
- Murray, 1957, Geologic Occurrence of Hydrocarbons in Gulf Coastal Province of the United States: Gulf Coast Association of Geological Societies, Transactions, Vol. VII, and p. 253-299.
- National Academies of Sciences, Engineering, and Medicine, 2019, Sequestration of Supercritical CO₂ in Deep Sedimentary Geological Formations; Synthesis in Negative Emissions Technologies and Reliable Sequestration: A Research Agenda, Washington, DC: The National Academies Press. pp. 319 401
- Nealon, D. J., 1982, A Hydrological Simulation of Hazardous Waste Injection in Mt. Simon, Ohio: Ohio State University, Master's Thesis, 279 p.

- Neuman, S. P. and Witherspoon, P. A., 1969a, Theory of flow in a confined two aquifer system, Water Resources. Res., 5, 4, 803-816.
- Neuman, S. P. and Witherspoon, P. A., 1969b, Applicability of current theories of flow in leaky aquifers, Water Resources. Res., 5, 4, 817-829.
- Neuzil, C. E., 1986, Groundwater flow in low permeability environments: Water Resources Research, v. 22, no. 8, p. 1163-1195
- Nichols, P. H., Peterson, G. E. and Wuestner, C. E., 1968, Summary of subsurface geology of northeast Texas, in Beebe, B. W. and Curtis, B. F., eds., Natural gases of North American: American Associated of Petroleum Geologists, Memoir 9, v. 1, p. 982-1004
- Nicholson, A., J., 2012, Empirical Analysis of Fault Seal Capacity for CO₂ sequestration, Lower Miocene, Texas Gulf Coast: Master's Thesis, The University of Texas at Austin, 100 p.
- Nyman, D.J. and Fayard, L.D., 1978, Groundwater resources of Tangipahoa and St. Tammany Parishes, southeastern Louisiana: State of LA, Office of Public Works, Water Resources Technical Report No. 15, 76 p.
- Nyman, D. J., 1984, The occurrence of high concentrations of chloride in the Chicot aquifer system in southwestern Louisiana, 2003: US Geological Survey Scientific Investigations Report 2004-5212, 56 p.
- Nyman, D. J., 1989. Quality of Water in Freshwater Aquifers in Southwestern Louisiana. Louisiana Department of Transportation and Development, Water Resources Technical Report 42, p. 29.
- Ostermeier, R. M. 2001, Compaction effects on porosity and permeability: Deepwater Gulf of Mexico turbidite. Journal of Petroleum Technology, 53(02), 68-74.
- Paine, W. R., 1968, Stratigraphy and sedimentation of subsurface Hackberry wedge and associated beds of southwestern Louisiana: AAPG Bulletin, v. 52, no. 2, p. 322-342
- Pair, Jessica D., 2017, The Tuscaloosa Marine Shale: Geologic History, Depositional Analysis, and Exploration Potential. Electronic Theses and Dissertations. 68.
- Pan, P., Wu, Z., Feng, X. and Yan, F., 2016, Geomechanical modeling of CO₂ geological storage: A review. Journal of Rock Mechanics and Geotechnical Engineering, 8, p. 936-947
- Paulson Jr, O. L. 1972, Various factors influence Wilcox deposits in the Golden Triangle. Oil Gas Journal.; United States, vol. 70(25), p 86
- Payne, J. N., 1968, Hydrologic significance of the lithofacies of the Sparta Sand in Arkansas, Louisiana, Mississippi, and Texas: USGS Professional Paper 569-A, p. 17
- Payne, J. N., 1972, Hydrogeologic significance of lithofacies of the Cane River Formation or

- equivalents of Arkansas, Louisiana, Mississippi, and Texas: Geological Survey Professional Paper 569-C, 17 p
- Porter, W. M., and S. W. Newsome, 1987, Shale Porosity and Permeability: E. I. du Pont de Nemours & Company, Inc., 15 p.
- Poulsen, S. E., Nielsen, S. B., Balling, N., 2012, Estimating the equilibrium formation temperature in the presence of bore fluid invasion, Geophysical Journal International, vol. 190, Issue 3, pp. 1551–1561.
- Prakken, L. B., 2004, Generalized Potentiometric Surface of the Kentwood Aquifer System and the "1,500-foot" and "1,700-foot" Sands of the Baton Rouge Area in Southeastern Louisiana, March-April 2003: U.S. Geological Survey Scientific Investigations Map 2862, 2 sheets
- Prakken, L., White, V., and Lovelace, J. 2014, Water Resources of Sabine Parish, Louisiana. Reston, VA: U. S. Geological Survey, Reston, VA, United States.
- Rainwater, E., H., 1962, Geological history and oil and gas possibilities of Mississippi: Geologic Research Papers 1962, Mississippi Geological Survey Bulletin 97, pp. 77–105.
- Rainwater, E. H., 1964, Regional stratigraphy of the Gulf Coast Miocene: GCAGS Trans., v. 14, p. 81-124.
- Rainwater, E. H., 1964(a), Regional Stratigraphy of the Midway and Wilcox in Mississippi: Mississippi Geological Economic and Topographical Survey, Bulletin No. 102, 9-31 pp.
- Rainwater, E. H., 1964(b), Regional Stratigraphy of the Gulf Coast Miocene: Gulf Coast Association of Geological Societies Transactions, v. 14, 81-124.
- Rouse, W. A., C. B. Enomoto, and N. J. Gianoutsos, 2018, Correlation of the Tuscaloosa marine shale in Mississippi, Louisiana, and East Texas, U.S.A.: Gulf Coast Association of Geological Societies Transactions, v. 68, p. 461–475.
- Rollo, J.R., 1960, Ground water in Louisiana: Louisiana Department of Conservation and Department of Public Works, Water Resources Bulletin 1, 84 p.
- Rutqvist, J., Wu, Y. S., Tsang, C. F. and Bodvarsson, G., 2002, A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock: International Journal of Rock Mechanics and Mining Sciences, v. 39, no. 4, p. 429–442
- Salvador, A., 1991, Triassic–Jurassic, in A. Salvador, ed., The Gulf of Mexico basin: Boulder, Colorado, Geological Society of America, The Geology of North America, v. J, p. 131–180.
- Sargent, B. P., 2011, Water use in Louisiana, 2010: Louisiana Department of Transportation and Development Water Resources Special Report no. 17, 135 p.

- Schlumberger, 1997, Log Interpretation Charts: Schlumberger Well Surveying Corporation, p 1-5 (Gen -9 Chart).
- Schlumberger, 1987, Log Interpretation Principles/Applications, Schlumberger Educational Services, Houston, Texas, page 95.
- Shirley, K., 1987, Valuable tool for Tuscaloosa; trend spins seismic success story: American Association of Petroleum Geologists Explorer, v. 8, no. 10, p. 14,25.
- Skoumal, R. J., Ries, R., Brudzinski, M., Barbour, A., & Currie, B. 2018, Earthquakes induced by hydraulic fracturing are pervasive in Oklahoma. *Journal of Geophysical Research*, **123**, pp. 10,918–10,935.
- Skoumal, R. J., Kaven J. O., Barbour A. J., Wicks, C., Brudzinski M. R., Cochran E. S., Rubinstein, J. L., 2021, The Induced Mw 5. 0 March 2020 West Texas Seismic Sequence: JGR Solid Earth, Volume 126, Issue 1, p. 17.
- Smoot, C.W., 1988, Louisiana hydraulic atlas map No. 3: Altitude of the base of the Freshwater in Louisiana: U.S. Geological Survey Water-Resources Investigation Report 86-4314, 1 sheet, http://pubs.er.usgs.gov/publication/wri864314
- Slaughter, G.M., 1981, Analysis of ground-water flow times near seven salt domes in the Gulf Interior Region: Prepared by Law Engineering Testing Company for Battelle Memorial Institute, Office of Nuclear Waste Isolation, 88 p
- Sneddon, J. W., Virdell, J., Whiteaker, T. L. and Ganey-Curry, P., 2016, A basin-scale perspective on Cenomanian-Turonian (Cretaceous) depositional systems, greater Gulf of Mexico (USA): Interpretation Journal, v. 1, p. SC1-SC22
- Sone, H. and Zoback, M., 2013, Mechanical properties of shale-gas reservoir rocks Part 2: Ductile creep, brittle strength, and their relation to the elastic modulus. Geophysics, Vol. 78, No. 5 (September-October 2013); p. D393–D402.
- Spooner, H. V., 1964, Basal Tuscaloosa sediments, east-central Louisiana: American Association of Petroleum Geologist Bulletin, v. 48, p. 1-21
- Stancliffe, R. J. and Adams, R. E. 1986, Lower Tuscaloosa fluvial channel styles at Liberty Field, Amite County, Mississippi: Transactions Gulf Coast Association of Geological Societies., v. 36, 305-313
- Stephens, B.P., 2009, Basement controls on subsurface geologic patterns and coastal geomorphology across the northern Gulf of Mexico: Implications for subsidence studies and coastal restoration: Gulf Coast Association of Geological Societies Transactions, v. 59, p. 729-751.
- Stevenson, D., and Agnew J. D., 1988, Lake Charles, Louisiana, Earthquake of 16 October 1983: Bulletin of the Seismological Society of America, Vol. 78, No. 4, pp. 1463-1474

- Stevenson, D. A., and McCulloh, R. P. 2001, Earthquakes in Louisiana, Louisiana Geol. Survey. Public Information Series No. 7, p. 8
- Stuart, C. G., Knochenmus, D. D., & McGee, B. D., 1994, Guide to Louisiana's ground-water resources. Water Resources Investigations, Report 94-4085, US Geological Survey.
- Sun, M., 1950, A Petrographic Study of the Eocene Jackson Group of Mississippi and adjacent Areas, LSU Historical Dissertations and Theses. 7954. https://digitalcommons.lsu.edu/gradschool disstheses/7954
- Swanson, S. M. & Karlsen, A. W., 2009, USGS Assessment of Undiscovered Oil and Gas Resources for the Oligocene Frio and Anahuac Formations, Onshore Gulf of Mexico Basin, USA. AAPG Annual Convention, San Antonio Texas, poster session, p.43.
- Swanson, S. M., Karlsen, A. W. and Valentine, B. J., 2013, Geologic Assessment of undiscovered oil and gas resources Oligocene Frio and Anahuac Formations, United States Gulf of Mexico coastal plane and State waters: U. S. Geological Survey Open-File Report 2013-1257, 66 p.
- Talman, S., 2015, Subsurface geochemical fate and effects of impurities contained in a CO2 stream injected into a deep saline aquifer: What is known: International Journal of Greenhouse Gas Control 40, p. 267 291.
- Todd, E. G. and Mitchum, R. M., 1977, Seismic sequences and global changes in sea level, part 8: Identification of Upper Triassic, Jurassic, and Lower Cretaceous seismic sequences in Gulf of Mexico and offshore West Africa: in Seismic Stratigraphy Applications to Hydrocarbon Exploration, Payton, C. E., ed., American Association of Petroleum Geologists Memoir 26, p. 145-163.
- Tomaszewski, D.J., 1988, Ground-water hydrology of Livingston, St. Helena, and parts of Ascension and Tangipahoa Parishes, southeastern Louisiana: Louisiana Department of Transportation and Development Water Resources Technical Report no. 43, p.54
- Tomaszewski, D.J., 2011, Water-Level surface in the Chicot Equivalent Aquifer System in Southeastern Louisiana, 2009: U.S. Geological Survey Scientific Investigations Map 3173, 2 sheets
- Turner, R., 1964, Kinetic studies of Acid Dissolution of Montmorillonite and Kaolinite: Ph.D. thesis, Univ. of Calif. Davis, p. 140.
- US Nuclear Regulatory Commission, 2010, Generic Issue 199 (GI-199): Implications of Updated Probabilistic Seismic Hazard Estimates in Central and Eastern United States on Existing Plants, Safety/Risk Assessment.

- Vail, P. R., Mitchum, R. M. and Thompson, S., 1977, Seismic stratigraphy and global changes in sea-level, Part 4: global cycles of relative changes in sea-level, in Seismic Stratigraphy-Applications to Hydrocarbon Exploration, Payton, C. E., ed., American Association of Petroleum Geologists Memoir 26, pp. 83-98.
- Warner, D. L., 1988, Abandoned oil and gas industry wells and their environmental implications: Underground Injection Practices Council, 1988 Summer Meeting; prepared for the American Petroleum Institute, pp. 69-90.
- Warner, D. L. and Syed, T., 1986, Confining layer study-supplemental report: prepared for U. S. EPA Region V, Chicago, Illinois.
- Weingarten, M., Ge S., Godt, J. W., Bekins B. A. and Rubinstein, J. L., 2015, High-rate injection is associated with the increase in U. S. mid-continent seismicity: Science vol. 348, Issue 6241, pp. 1336-1340.
- Wesson, R. L., and Nicholson, C., 1987, Earthquake hazard associated with deep well injection: U.S. Geological Survey Open-File Report 87-331, p. 108
- White, V.E., 2017, Water resources of the Southern Hills regional aquifer system, southeastern Louisiana: U.S. Geological Survey Fact Sheet 2017–3010, 6 p., https://doi.org/10.3133/fs20173010
- White, V.E., and Prakken, L.B., 2016, Water resources of St. Helena Parish, Louisiana: U.S. Geological Survey Fact Sheet 2016–3047, 6 p., http://dx.doi.org/10.3133/fs20163047
- White, V.E., and Prakken, L.B., 2017, Water resources of Calcasieu Parish, Louisiana: U.S. Geological Survey Fact Sheet 2016–3066, 6 p., http://dx.doi.org/10.3133/fs20163066.
- Williams S., Carlsen T., Constable K., Guldahl A., 2009, Identification and qualification of shale annular barriers using wireline logs, presentation for SPE/IADC Drilling Conference and Exhibition, Amsterdam, The Netherlands, p. 20.
- Wood, D. H. and Guevara, E. H., 1981, Regional Structural cross sections and general stratigraphy, East Texas basin: University of Texas at Austin, Bureau of Economic Geology, 21 p.
- Woolf, K. S., 2012, Regional Character of the Lower Tuscaloosa Formation Depositional Systems and Trends in Reservoir Quality, Dissertations, University of Texas at Austin, p. 241.
- Yuma Energy Inc, 2014, Corporation Presentation. https://www.slideshare.net/Companyspotlight/yuma-energy-inc-october-2014-corporate-presentation.
- Zhang, J. and Roegiers, J. C., 2010, Integrating borehole-breakout dimensions, strength criteria and leak-off test results, to constrain the state of stress across the Chelungpu Fault, Taiwan. Tectonophysics, Volume 492, Issues 1-4, p. 295–298.

Revision Number: 1 Revision Date: February 2023 Module A – Project Information Tracking

Zoback, M. L. and Zoback, M., 1980, State of Stress in the Conterminous United States. Journal of Geophysical Research, v. 85, no. B11, pp. 6113-6156